Amazon CloudWatch is a native AWS monitoring tool for AWS programs. It provides data collection and resource monitoring capabilities.
$0
per canary run
Control-M
Score 9.3 out of 10
N/A
Control-M from BMC is a platform for integrating, automating, and orchestrating application and data workflows in production across complex hybrid technology ecosystems. It provides deep operational capabilities, delivering speed, scale, security, and governance.
$29,000
per year
Pricing
Amazon CloudWatch
Control-M
Editions & Modules
Canaries
$0.0012
per canary run
Logs - Analyze (Logs Insights queries)
$0.005
per GB of data scanned
Over 1,000,000 Metrics
$0.02
per month
Contributor Insights - Matched Log Events
$0.02
per month per one million log events that match the rule
Logs - Store (Archival)
$0.03
per GB
Next 750,000 Metrics
$0.05
per month
Next 240,000 Metrics
$0.10
per month
Alarm - Standard Resolution (60 Sec)
$0.10
per month per alarm metric
First 10,000 Metrics
$0.30
per month
Alarm - High Resolution (10 Sec)
$0.30
per month per alarm metric
Alarm - Composite
$0.50
per month per alarm
Logs - Collect (Data Ingestion)
$0.50
per GB
Contributor Insights
$0.50
per month per rule
Events - Custom
$1.00
per million events
Events - Cross-account
$1.00
per million events
CloudWatch RUM
$1
per 100k events
Dashboard
$3.00
per month per dashboard
CloudWatch Evidently - Events
$5
per 1 million events
CloudWatch Evidently - Analysis Units
$7.50
per 1 million analysis units
On-Premise
Contact Sales
SaaS
Starting at $29,000
per year
Offerings
Pricing Offerings
Amazon CloudWatch
Control-M
Free Trial
Yes
Yes
Free/Freemium Version
Yes
No
Premium Consulting/Integration Services
Yes
Yes
Entry-level Setup Fee
No setup fee
Optional
Additional Details
With Amazon CloudWatch, there is no up-front commitment or minimum fee; you simply pay for what you use. You will be charged at the end of the month for your usage.
For out business we find that AWS Cloudwatch is good at providing real-time metrics for monitoring and analysing the performance and usage of our platform by customers. It is possible to create custom metrics from log events, such people adding items to a basket, checking out or abandoning their orders.
Handling automation backend jobs helped avoid team and customer escalations. One hundred jobs are running behind the server, for which manual monitoring is ineffective. Therefore, automated scripts are used, which are run via Control-M Jobs. There is no restriction on job scheduling. I can schedule N number of jobs as per convenience and business needs.
It provides lot many out of the box dashboard to observe the health and usage of your cloud deployments. Few examples are CPU usage, Disk read/write, Network in/out etc.
It is possible to stream CloudWatch log data to Amazon Elasticsearch to process them almost real time.
If you have setup your code pipeline and wants to see the status, CloudWatch really helps. It can trigger lambda function when certain cloudWatch event happens and lambda can store the data to S3 or Athena which Quicksight can represent.
Memory metrics on EC2 are not available on CloudWatch. Depending on workloads if we need visibility on memory metrics we use Solarwinds Orion with the agent installed. For scalable workloads, this involves customization of images being used.
Visualization out of the box. But this can easily be addressed with other solutions such as Grafana.
By design, this is only used for AWS workloads so depending on your environment cannot be used as an all in one solution for your monitoring.
I haven't come across too many spots where I'm not happy with the product. Most of the shortfalls were in my knowledge of the product as opposed to the actual product. Currently we're having a little bit of an issue with the deployment of the software to the servers, but it's more of an "us" problem than a product problem. I can't really give any good examples of shortfalls of the product that I've found so far.
It is one of the best solutions on the market, in terms of innovation, reliability and stability. Control-M provides security when used by the largest companies in Mexico such as banks, department stores and logistics. It has proven to be able to integrate with new technologies on the market and provide almost 100% availability, thanks to its automatic FailOver scheme.
It's excellent at collecting logs. It's easy to set up. The viewing & querying part could be much better, though. The query syntax takes some time to get used to, & the examples are not helpful. Also, while being great, Log Insights requires manual picking of log streams to query across every time.
It has an excellent graphical user interface and robust functionalities, which any scheduling tool currently has in the current market. Strengthening security measures, such as role-based access control and encryption, is essential to protect sensitive data. Providing tools to optimize resource utilization and reduce costs would be valuable. Limited options for customizing the user interface can hinder productivity. Allowing users to tailor the interface to their needs would enhance the experience.
Secondary Instances: Control-M supports the installation of a secondary instance of the entire Control-M environment, Control-M/EM, or Control-M/Server.Automatic & Manual Failover: In case of a failure on the primary host, Control-M can automatically failover to the secondary host if using Oracle or MSSQL databases. Manual failover is also an option, enabling a controlled switch during planned maintenance.Fallback: After resolving the issue on the primary host, you can easily fall back to it, or even designate the secondary host as the new primary. Database Replication: For high availability, Control-M leverages database replication from the primary site to a disaster recovery site. While replication is essential, its implementation and maintenance are the user's responsibility.
good page load times, efficient report completion, and minimal impact on integrated systems. Specifically, the well-designed GUI contributes to a positive user experience, and the platform's ability to automate various stages of the workflow, including Big Data processes, is highlighted as a key strength. Fast Page Loads: Control-M is reported to have a responsive user interface with fast page load times, allowing users to quickly navigate and manage their workflows
Support is effective, and we were able to get any problems that we couldn't get solved through community discussion forums solved for us by the AWS support team. For example, we were assisted in one instance where we were not sure about the best metrics to use in order to optimize an auto-scaling group on EC2. The support team was able to look at our metrics and give a useful recommendation on which metrics to use.
Support is generally excellent. Getting lower priority ones resolved can take a while, but it's rare for something to have to be dumped in the "unfixable" bin. If you end up speaking to Houston or Tel Aviv, then you know you've got a "live one".
Very knowledgeable instructors provide a hands-on, collaborative learning experience and can interact directly with instructors to develop our Control-M skills. This format allows for immediate feedback, in-depth discussions, and tailored guidance, leading to a deeper understanding of Control-M concepts and practical application. Face-to-face interaction fosters higher engagement and a more dynamic learning environment.
Simple and easy to use web based, well paced. Available any time. All online courses are simple and easy to access and use. Very practical everyday use scenarios and solutions. Incorporates software simulations, learning games, and built-in assessments to enhance comprehension and engagement. Online subscriptions are regularly updated with the latest product information, ensuring users have access to the most current knowledge.
As HA we have depend on the external DB, why don't we have HA feasibility with embedded DB. As with external DB, there are performance issues and fine tuning the DB. As if its embedded DB, Control-M it self take care of the functionality.
Grafana is definitely a lot better and flexible in comparison with Amazon CloudWatch for visualisation, as it offers much more options and is versatile. VictoriaMetrics and Prometheus are time-series databases which can do almost everything cloudwatch can do in a better and cheaper way. Integrating Grafana with them will make it more capable Elasticsearch for log retention and querying will surpass cloudwatch log monitoring in both performance and speed
Redwood RunMyJobs seemed impressive as well since it was also cross-platform, flexible, and versatile. However, we went with Control-M because it was less expensive and we were already using it on our mainframe environment. The distributed version of Control-M was much more user-friendly due to the GUI instead of the command-line interface used on the mainframe.
While Control-M offers flexibility with usage-based and subscription-based pricing, some users might prefer more predictable, upfront costs, especially for large-scale deployments. A potential area for improvement could be offering more options for fixed-term contracts with predictable pricing based on factors like the number of agents or jobs, providing a clearer budget for long-term planning
awesome product.Control-M delivers advanced operational capabilities easily consumed by Dev, Ops, data teams, and lines of business.Control-M Workflow InsightsApplication and data workflow observability: Increased confidence that SLAs are being met for Control-M users and IT leadersComprehensive control and management capabilities: Enhanced dashboards and reporting with constant telemetry and intelligent analysis on executing workflowsSelf-service visibility: In-depth reporting to help teams work autonomously
Strengths: The vendor provided strong post-sales support, timely issue resolution, and effective onboarding. Their technical team was knowledgeable and responsive, ensuring smooth integration and minimal disruption. Training resources and documentation were comprehensive. Areas for Improvement: While overall service was excellent, occasional delays in advanced customization or escalations slightly impacted timelines. More proactive optimization suggestions could further enhance value.
Control-M has improved service delivery times, reliability and quality of batch processing.
It has simplified the management of the operation and the use of the alert system has made it possible to act in a coordinated and efficient manner to solve problems.
The implementation of policies has made it possible to make greater use of Control-M and thus reduce development costs that are generated unnecessarily when the potential of the system is not considered.