Amazon SageMaker vs. Caffe Deep Learning Framework

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Amazon SageMaker
Score 8.0 out of 10
N/A
Amazon SageMaker enables developers and data scientists to quickly and easily build, train, and deploy machine learning models at any scale. Amazon SageMaker removes all the barriers that typically slow down developers who want to use machine learning.N/A
Caffe Deep Learning Framework
Score 7.0 out of 10
N/A
Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research and by community contributors.N/A
Pricing
Amazon SageMakerCaffe Deep Learning Framework
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Amazon SageMakerCaffe Deep Learning Framework
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Amazon SageMakerCaffe Deep Learning Framework
Best Alternatives
Amazon SageMakerCaffe Deep Learning Framework
Small Businesses
InterSystems IRIS
InterSystems IRIS
Score 7.9 out of 10
InterSystems IRIS
InterSystems IRIS
Score 7.9 out of 10
Medium-sized Companies
InterSystems IRIS
InterSystems IRIS
Score 7.9 out of 10
Posit
Posit
Score 9.9 out of 10
Enterprises
InterSystems IRIS
InterSystems IRIS
Score 7.9 out of 10
Posit
Posit
Score 9.9 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Amazon SageMakerCaffe Deep Learning Framework
Likelihood to Recommend
9.0
(5 ratings)
4.0
(1 ratings)
User Testimonials
Amazon SageMakerCaffe Deep Learning Framework
Likelihood to Recommend
Amazon AWS
It allows for one-click processes and for things to be auto checked before they are moved through the process but through the system. It also makes training easy. I am able to train users on the basic fundamentals of the tool and how it is used very easily as it is fully managed on its own which is incredible.
Read full review
Open Source
Caffe is only appropriate for some new beginners who don't want to write any lines of code, just want to use existing models for image recognition, or have some taste of the so-called Deep Learning.
Read full review
Pros
Amazon AWS
  • Machine Learning at scale by deploying huge amount of training data
  • Accelerated data processing for faster outputs and learnings
  • Kubernetes integration for containerized deployments
  • Creating API endpoints for use by technical users
Read full review
Open Source
  • Caffe is good for traditional image-based CNN as this was its original purpose.
Read full review
Cons
Amazon AWS
  • It's very good for the hardcore programmer, but a little bit complex for a data scientist or new hire who does not have a strong programming background.
  • Most of the popular library and ML frameworks are there, but we still have to depend on them for new releases.
Read full review
Open Source
  • Caffe's model definition - static configuration files are really painful. Maintaining big configuration files with so many parameters and details of many layers can be a really challenging task.
  • Besides imagine and vision (CNN), Caffe also gradually adds some other NN architecture support. It doesn't play well in a recurrent domain, so we have to say variety is a problem.
  • Caffe's deployment for production is not easy. The community support and project development all mean it is almost fading out of the market.
  • The learning curve is quite steep. Although TensorFlow's is not easy to master either, the reward for Caffe is much less than the TensorFlow can offer.
Read full review
Alternatives Considered
Amazon AWS
Amazon SageMaker took the heavy lifting out of building and creating models. It allowed for our organization to use our current system for integration and essentially added on a feature to help all levels of Data scientists and IT professionals in our department and company as a whole. The training was simple as well.
Read full review
Open Source
TensorFlow is kind of low-level API most suited for those developers who like to control the details, while Keras provides some kind of high-level API for those users who want to boost their project or experiment by reusing most of the existing architecture or models and the accumulated best practice. However, Caffe isn't like either of them so the position for the user is kind of embarrassing.
Read full review
Return on Investment
Amazon AWS
  • We have been able to deliver data products more rapidly because we spend less time building data pipelines and model servers.
  • We can prototype more rapidly because it is easy to configure notebooks to access AWS resources.
  • For our use-cases, serving models is less expensive with SageMaker than bespoke servers.
Read full review
Open Source
  • Since we stopped using Caffe before it can reach the production phase, there is no clear ROI that can be defined.
Read full review
ScreenShots