Apache CouchDB vs. Apache Hive

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
CouchDB
Score 6.1 out of 10
N/A
Apache CouchDB is an HTTP + JSON document database with Map Reduce views and bi-directional replication. The Couch Replication Protocol is implemented in a variety of projects and products that span computing environments from globally distributed server-clusters, over mobile phones to web browsers.N/A
Apache Hive
Score 8.1 out of 10
N/A
Apache Hive is database/data warehouse software that supports data querying and analysis of large datasets stored in the Hadoop distributed file system (HDFS) and other compatible systems, and is distributed under an open source license.N/A
Pricing
Apache CouchDBApache Hive
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
CouchDBApache Hive
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Apache CouchDBApache Hive
Top Pros
Top Cons
Features
Apache CouchDBApache Hive
NoSQL Databases
Comparison of NoSQL Databases features of Product A and Product B
Apache CouchDB
7.9
2 Ratings
11% below category average
Apache Hive
-
Ratings
Performance8.02 Ratings00 Ratings
Availability8.52 Ratings00 Ratings
Concurrency8.52 Ratings00 Ratings
Security6.02 Ratings00 Ratings
Scalability8.02 Ratings00 Ratings
Data model flexibility7.02 Ratings00 Ratings
Deployment model flexibility9.02 Ratings00 Ratings
Best Alternatives
Apache CouchDBApache Hive
Small Businesses
IBM Cloudant
IBM Cloudant
Score 7.9 out of 10
Google BigQuery
Google BigQuery
Score 8.7 out of 10
Medium-sized Companies
IBM Cloudant
IBM Cloudant
Score 7.9 out of 10
Cloudera Enterprise Data Hub
Cloudera Enterprise Data Hub
Score 9.0 out of 10
Enterprises
IBM Cloudant
IBM Cloudant
Score 7.9 out of 10
Oracle Exadata
Oracle Exadata
Score 8.5 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache CouchDBApache Hive
Likelihood to Recommend
9.0
(10 ratings)
8.0
(35 ratings)
Likelihood to Renew
9.0
(9 ratings)
10.0
(1 ratings)
Usability
8.0
(1 ratings)
8.5
(7 ratings)
Support Rating
-
(0 ratings)
7.0
(6 ratings)
Implementation Rating
9.0
(1 ratings)
-
(0 ratings)
User Testimonials
Apache CouchDBApache Hive
Likelihood to Recommend
Apache
Great for REST API development, if you want a small, fast server that will send and receive JSON structures, CouchDB is hard to beat. Not great for enterprise-level relational database querying (no kidding). While by definition, document-oriented databases are not relational, porting or migrating from relational, and using CouchDB as a backend is probably not a wise move as it's reliable, but It may not always be highly available.
Read full review
Apache
Software work execution is on a large scale, it is good to use for new projects or organizational changes, data lineage mapping has always been dubious but this one has had good results. You can store and synchronize data from different departments, the storage process can be manual but it is best automated.
Read full review
Pros
Apache
  • It can replicate and sync with web browsers via PouchDB. This lets you keep a synced copy of your database on the client-side, which offers much faster data access than continuous HTTP requests would allow, and enables offline usage.
  • Simple Map/Reduce support. The M/R system lets you process terabytes of documents in parallel, save the results, and only need to reprocess documents that have changed on subsequent updates. While not as powerful as Hadoop, it is an easy to use query system that's hard to screw up.
  • Sharding and Clustering support. As of CouchDB 2.0, it supports clustering and sharding of documents between instances without needing a load balancer to determine where requests should go.
  • Master to Master replication lets you clone, continuously backup, and listen for changes through the replication protocol, even over unreliable WAN links.
Read full review
Apache
  • Apache Hive allows use to write expressive solutions to complex problems thanks to its SQL-like syntax.
  • Relatively easy to set up and start using.
  • Very little ramp-up to start using the actual product, documentation is very thorough, there is an active community, and the code base is constantly being improved.
Read full review
Cons
Apache
  • NoSQL DB can become a challenge for seasoned RDBMS users.
  • The map-reduce paradigm can be very demanding for first-time users.
  • JSON format documents with Key-Value pairs are somewhat verbose and consume more storage.
Read full review
Apache
  • Some queries, particularly complex joins, are still quite slow and can take hours
  • Previous jobs and queries are not stored sometimes
  • Switching to Impala can sometimes be time-consuming (i.e. the system hangs, or is slow to respond).
  • Sometimes, directories and tables don't load properly which causes confusion
Read full review
Likelihood to Renew
Apache
Because our current solution S3 is working great and CouchDB was a nightmare. The worst is that at first, it seemed fine until we filled it with tons of data and then started to create views and actually delete.
Read full review
Apache
Since I do not know the second data warehouse solution that integrate with HDFS as well as Hive.
Read full review
Usability
Apache
Couchdb is very simple to use and the features are also reduced but well implemented. In order to use it the way its designed, the ui is adequate and easy. Of course, there are some other task that can't be performed through the admin ui but the minimalistic design allows you to use external libraries to develop custom scripts
Read full review
Apache
Hive is a very good big data analysis and ad-hoc query platform, which supports scaling also. The BI processes can be easily integrated with Hadoop via the Hive. It can deal with a much larger data set that traditional RDBMS can not. It is a "must-have" component of the big data domain.
Read full review
Support Rating
Apache
No answers on this topic
Apache
Apache Hive is a FOSS project and its open source. We need not definitely comment on anything about the support of open source and its developer community. But, it has got tremendous developer support, awesome documentation. I would justify the fact that much support can be gathered from the community backup.
Read full review
Implementation Rating
Apache
it support is minimal also hw requirements. Also for development, we can have databases replicated everywhere and the replication is automagical. once you set up the security and the rules for replication, you are ready to go. The absence of a model let you build your app the way you want it
Read full review
Apache
No answers on this topic
Alternatives Considered
Apache
It has been 5+ years since we chose CouchDB. We looked an MongoDB, Cassandra, and probably some others. At the end of the day, the performance, power potential, and simplicity of CouchDB made it a simple choice for our needs. No one should use just because we did. As I said early, make sure you understand your problems, and find the right solution. Some random reading that might be useful: http://www.julianbrowne.com/article/viewer/brewers-cap-theorem https://www.couchbase.com/nosql-resources/why-nosql\ https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
Read full review
Apache
Besides Hive, I have used Google BigQuery, which is costly but have very high computation speed. Amazon Redshift is the another product, I used in my recent organisation. Both Redshift and BigQuery are managed solution whereas Hive needs to be managed
Read full review
Return on Investment
Apache
  • It has saved us hours and hours of coding.
  • It is has taught us a new way to look at things.
  • It has taught us patience as the first few weeks with CouchDB were not pleasant. It was not easy to pick up like MongoDB.
Read full review
Apache
  • Apache hive is secured and scalable solution that helps in increasing the overall organization productivity.
  • Apache hive can handle and process large amount of data in a sufficient time manner.
  • It simplifies writing SQL queries, hence helping the organization as most companies use SQL for all query jobs.
Read full review
ScreenShots