Apache Flink vs. Apache Kafka

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Apache Flink
Score 9.0 out of 10
N/A
Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. Flink has been designed to run in all common cluster environments, perform computations at in-memory speed and at any scale. And FlinkCEP is the Complex Event Processing (CEP) library implemented on top of Flink. Users can detect event patterns in streams of events.N/A
Apache Kafka
Score 8.2 out of 10
N/A
Apache Kafka is an open-source stream processing platform developed by the Apache Software Foundation written in Scala and Java. The Kafka event streaming platform is used by thousands of companies for high-performance data pipelines, streaming analytics, data integration, and mission-critical applications.N/A
Pricing
Apache FlinkApache Kafka
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache FlinkApache Kafka
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details——
More Pricing Information
Community Pulse
Apache FlinkApache Kafka
Top Pros
Top Cons
Features
Apache FlinkApache Kafka
Streaming Analytics
Comparison of Streaming Analytics features of Product A and Product B
Apache Flink
8.7
1 Ratings
8% above category average
Apache Kafka
-
Ratings
Real-Time Data Analysis10.01 Ratings00 Ratings
Data Ingestion from Multiple Data Sources7.01 Ratings00 Ratings
Low Latency10.01 Ratings00 Ratings
Data wrangling and preparation6.01 Ratings00 Ratings
Linear Scale-Out9.01 Ratings00 Ratings
Data Enrichment10.01 Ratings00 Ratings
Best Alternatives
Apache FlinkApache Kafka
Small Businesses
Amazon Kinesis
Amazon Kinesis
Score 8.7 out of 10

No answers on this topic

Medium-sized Companies
Confluent
Confluent
Score 8.4 out of 10
IBM MQ
IBM MQ
Score 9.2 out of 10
Enterprises
Spotfire Streaming
Spotfire Streaming
Score 7.0 out of 10
IBM MQ
IBM MQ
Score 9.2 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache FlinkApache Kafka
Likelihood to Recommend
9.0
(1 ratings)
8.3
(19 ratings)
Likelihood to Renew
-
(0 ratings)
9.0
(2 ratings)
Usability
-
(0 ratings)
8.0
(2 ratings)
Support Rating
-
(0 ratings)
8.4
(4 ratings)
User Testimonials
Apache FlinkApache Kafka
Likelihood to Recommend
Apache
In well-suited scenarios, I would recommend using Apache Flink when you need to perform real-time analytics on streaming data, such as monitoring user activities, analyzing IoT device data, or processing financial transactions in real-time. It is also a good choice in scenarios where fault tolerance and consistency are crucial. I would not recommend it for simple batch processing pipelines or for teams that aren't experienced, as it might be overkill, and the steep learning curve may not justify the investment.
Read full review
Apache
Apache Kafka is well-suited for most data-streaming use cases. Amazon Kinesis and Azure EventHubs, unless you have a specific use case where using those cloud PaAS for your data lakes, once set up well, Apache Kafka will take care of everything else in the background. Azure EventHubs, is good for cross-cloud use cases, and Amazon Kinesis - I have no real-world experience. But I believe it is the same.
Read full review
Pros
Apache
  • Low latency Stream Processing, enabling real-time analytics
  • Scalability, due its great parallel capabilities
  • Stateful Processing, providing several built-in fault tolerance systems
  • Flexibility, supporting both batch and stream processing
Read full review
Apache
  • Really easy to configure. I've used other message brokers such as RabbitMQ and compared to them, Kafka's configurations are very easy to understand and tweak.
  • Very scalable: easily configured to run on multiple nodes allowing for ease of parallelism (assuming your queues/topics don't have to be consumed in the exact same order the messages were delivered)
  • Not exactly a feature, but I trust Kafka will be around for at least another decade because active development has continued to be strong and there's a lot of financial backing from Confluent and LinkedIn, and probably many other companies who are using it (which, anecdotally, is many).
Read full review
Cons
Apache
  • Python/SQL API, since both are relatively new, still misses a few features in comparison with the Java/Scala option
  • Steep Learning Curve, it's documentation could be improved to something more user-friendly, and it could also discuss more theoretical concepts than just coding
  • Community smaller than other frameworks
Read full review
Apache
  • Sometimes it becomes difficult to monitor our Kafka deployments. We've been able to overcome it largely using AWS MSK, a managed service for Apache Kafka, but a separate monitoring dashboard would have been great.
  • Simplify the process for local deployment of Kafka and provide a user interface to get visibility into the different topics and the messages being processed.
  • Learning curve around creation of broker and topics could be simplified
Read full review
Likelihood to Renew
Apache
No answers on this topic
Apache
Kafka is quickly becoming core product of the organization, indeed it is replacing older messaging systems. No better alternatives found yet
Read full review
Usability
Apache
No answers on this topic
Apache
Apache Kafka is highly recommended to develop loosely coupled, real-time processing applications. Also, Apache Kafka provides property based configuration. Producer, Consumer and broker contain their own separate property file
Read full review
Support Rating
Apache
No answers on this topic
Apache
Support for Apache Kafka (if willing to pay) is available from Confluent that includes the same time that created Kafka at Linkedin so they know this software in and out. Moreover, Apache Kafka is well known and best practices documents and deployment scenarios are easily available for download. For example, from eBay, Linkedin, Uber, and NYTimes.
Read full review
Alternatives Considered
Apache
Apache Spark is more user-friendly and features higher-level APIs. However, it was initially built for batch processing and only more recently gained streaming capabilities. In contrast, Apache Flink processes streaming data natively. Therefore, in terms of low latency and fault tolerance, Apache Flink takes the lead. However, Spark has a larger community and a decidedly lower learning curve.
Read full review
Apache
I used other messaging/queue solutions that are a lot more basic than Confluent Kafka, as well as another solution that is no longer in the market called Xively, which was bought and "buried" by Google. In comparison, these solutions offer way fewer functionalities and respond to other needs.
Read full review
Return on Investment
Apache
  • Allowed for real-time data recovery, adding significant value to the busines
  • Enabled us to create new internal tools that we couldn't find in the market, becoming a strategic asset for the business
  • Enhanced the overall technical capability of the team
Read full review
Apache
  • Positive: Get a quick and reliable pub/sub model implemented - data across components flows easily.
  • Positive: it's scalable so we can develop small and scale for real-world scenarios
  • Negative: it's easy to get into a confusing situation if you are not experienced yet or something strange has happened (rare, but it does). Troubleshooting such situations can take time and effort.
Read full review
ScreenShots