Apache Hadoop vs. Apache Kafka

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Hadoop
Score 7.0 out of 10
N/A
Hadoop is an open source software from Apache, supporting distributed processing and data storage. Hadoop is popular for its scalability, reliability, and functionality available across commoditized hardware.N/A
Apache Kafka
Score 8.2 out of 10
N/A
Apache Kafka is an open-source stream processing platform developed by the Apache Software Foundation written in Scala and Java. The Kafka event streaming platform is used by thousands of companies for high-performance data pipelines, streaming analytics, data integration, and mission-critical applications.N/A
Pricing
Apache HadoopApache Kafka
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
HadoopApache Kafka
Free Trial
NoNo
Free/Freemium Version
YesNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details——
More Pricing Information
Community Pulse
Apache HadoopApache Kafka
Considered Both Products
Hadoop
Chose Apache Hadoop
MariaDB - Better to be already in the cloud you will use it for. Issues have improved as it has matured over the year.s
CockroachDB - Not nearly as performant (even out of the box) as Apache Hadoop. More configurations required just to make it work. In memory cacheing is an issue.
Chose Apache Hadoop
Hadoop provides storage for large data sets and a powerful processing model to crunch and transform huge amounts of data. It does not assume the underlying hardware or infrastructure and enables the users to build data processing infrastructure from commodity hardware. All the …
Apache Kafka

No answer on this topic

Top Pros
Top Cons
Best Alternatives
Apache HadoopApache Kafka
Small Businesses

No answers on this topic

No answers on this topic

Medium-sized Companies
Cloudera Manager
Cloudera Manager
Score 9.9 out of 10
IBM MQ
IBM MQ
Score 9.1 out of 10
Enterprises
IBM Analytics Engine
IBM Analytics Engine
Score 8.6 out of 10
IBM MQ
IBM MQ
Score 9.1 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache HadoopApache Kafka
Likelihood to Recommend
8.9
(36 ratings)
8.3
(18 ratings)
Likelihood to Renew
9.6
(8 ratings)
9.0
(2 ratings)
Usability
8.5
(5 ratings)
10.0
(1 ratings)
Performance
8.0
(1 ratings)
-
(0 ratings)
Support Rating
7.5
(3 ratings)
8.4
(4 ratings)
Online Training
6.1
(2 ratings)
-
(0 ratings)
User Testimonials
Apache HadoopApache Kafka
Likelihood to Recommend
Apache
Altogether, I want to say that Apache Hadoop is well-suited to a larger and unstructured data flow like an aggregation of web traffic or even advertising. I think Apache Hadoop is great when you literally have petabytes of data that need to be stored and processed on an ongoing basis. Also, I would recommend that the software should be supplemented with a faster and interactive database for a better querying service. Lastly, it's very cost-effective so it is good to give it a shot before coming to any conclusion.
Read full review
Apache
Apache Kafka is well-suited for most data-streaming use cases. Amazon Kinesis and Azure EventHubs, unless you have a specific use case where using those cloud PaAS for your data lakes, once set up well, Apache Kafka will take care of everything else in the background. Azure EventHubs, is good for cross-cloud use cases, and Amazon Kinesis - I have no real-world experience. But I believe it is the same.
Read full review
Pros
Apache
  • Handles large amounts of unstructured data well, for business level purposes
  • Is a good catchall because of this design, i.e. what does not fit into our vertical tables fits here.
  • Decent for large ETL pipelines and logging free-for-alls because of this, also.
Read full review
Apache
  • Really easy to configure. I've used other message brokers such as RabbitMQ and compared to them, Kafka's configurations are very easy to understand and tweak.
  • Very scalable: easily configured to run on multiple nodes allowing for ease of parallelism (assuming your queues/topics don't have to be consumed in the exact same order the messages were delivered)
  • Not exactly a feature, but I trust Kafka will be around for at least another decade because active development has continued to be strong and there's a lot of financial backing from Confluent and LinkedIn, and probably many other companies who are using it (which, anecdotally, is many).
Read full review
Cons
Apache
  • Less organizational support system. Bugs need to be fixed and outside help take a long time to push updates
  • Not for small data sets
  • Data security needs to be ramped up
  • Failure in NameNode has no replication which takes a lot of time to recover
Read full review
Apache
  • Sometimes it becomes difficult to monitor our Kafka deployments. We've been able to overcome it largely using AWS MSK, a managed service for Apache Kafka, but a separate monitoring dashboard would have been great.
  • Simplify the process for local deployment of Kafka and provide a user interface to get visibility into the different topics and the messages being processed.
  • Learning curve around creation of broker and topics could be simplified
Read full review
Likelihood to Renew
Apache
Hadoop is organization-independent and can be used for various purposes ranging from archiving to reporting and can make use of economic, commodity hardware. There is also a lot of saving in terms of licensing costs - since most of the Hadoop ecosystem is available as open-source and is free
Read full review
Apache
Kafka is quickly becoming core product of the organization, indeed it is replacing older messaging systems. No better alternatives found yet
Read full review
Usability
Apache
Great! Hadoop has an easy to use interface that mimics most other data warehouses. You can access your data via SQL and have it display in a terminal before exporting it to your business intelligence platform of choice. Of course, for smaller data sets, you can also export it to Microsoft Excel.
Read full review
Apache
Apache Kafka is highly recommended to develop loosely coupled, real-time processing applications. Also, Apache Kafka provides property based configuration. Producer, Consumer and broker contain their own separate property file
Read full review
Support Rating
Apache
We went with a third party for support, i.e., consultant. Had we gone with Azure or Cloudera, we would have obtained support directly from the vendor. my rating is more on the third party we selected and doesn't reflect the overall support available for Hadoop. I think we could have done better in our selection process, however, we were trying to use an already approved vendor within our organization. There is plenty of self-help available for Hadoop online.
Read full review
Apache
Support for Apache Kafka (if willing to pay) is available from Confluent that includes the same time that created Kafka at Linkedin so they know this software in and out. Moreover, Apache Kafka is well known and best practices documents and deployment scenarios are easily available for download. For example, from eBay, Linkedin, Uber, and NYTimes.
Read full review
Online Training
Apache
Hadoop is a complex topic and best suited for classrom training. Online training are a waste of time and money.
Read full review
Apache
No answers on this topic
Alternatives Considered
Apache
Not used any other product than Hadoop and I don't think our company will switch to any other product, as Hadoop is providing excellent results. Our company is growing rapidly, Hadoop helps to keep up our performance and meet customer expectations. We also use HDFS which provides very high bandwidth to support MapReduce workloads.
Read full review
Apache
I used other messaging/queue solutions that are a lot more basic than Confluent Kafka, as well as another solution that is no longer in the market called Xively, which was bought and "buried" by Google. In comparison, these solutions offer way fewer functionalities and respond to other needs.
Read full review
Return on Investment
Apache
  • There are many advantages of Hadoop as first it has made the management and processing of extremely colossal data very easy and has simplified the lives of so many people including me.
  • Hadoop is quite interesting due to its new and improved features plus innovative functions.
Read full review
Apache
  • Positive: Get a quick and reliable pub/sub model implemented - data across components flows easily.
  • Positive: it's scalable so we can develop small and scale for real-world scenarios
  • Negative: it's easy to get into a confusing situation if you are not experienced yet or something strange has happened (rare, but it does). Troubleshooting such situations can take time and effort.
Read full review
ScreenShots