The Apache HBase project's goal is the hosting of very large tables -- billions of rows X millions of columns -- atop clusters of commodity hardware. Apache HBase is an open-source, distributed, versioned, non-relational database modeled after Google's Bigtable.
N/A
Oracle Autonomous Data Warehouse
Score 9.2 out of 10
N/A
Oracle Autonomous Data Warehouse is optimized for analytic workloads, including data marts, data warehouses, data lakes, and data lakehouses. With Autonomous Data Warehouse, data scientists, business analysts, and nonexperts can discover business insights using data of any size and type. The solution is built for the cloud and optimized using Oracle Exadata.
N/A
Pricing
Apache HBase
Oracle Autonomous Data Warehouse
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
HBase
Oracle Autonomous Data Warehouse
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Apache HBase
Oracle Autonomous Data Warehouse
Features
Apache HBase
Oracle Autonomous Data Warehouse
NoSQL Databases
Comparison of NoSQL Databases features of Product A and Product B
Hbase is well suited for large organizations with millions of operations performing on tables, real-time lookup of records in a table, range queries, random reads and writes and online analytics operations. Hbase cannot be replaced for traditional databases as it cannot support all the features, CPU and memory intensive. Observed increased latency when using with MapReduce job joins.
II would recommend Oracle Autonomous Data Warehouse to someone looking to fully automate the transferring of data especially in a warehouse scenario though I can see the elasticity of the suite that is offered and can see it is applicable in other scenarios not just warehouses.
Very easy and fast to load data into the Oracle Autonomous Data Warehouse
Exceptionally fast retrieval of data joining 100 million row table with a billion row table plus the size of the database was reduced by a factor of 10 due to how Oracle store[s] and organise[s] data and indexes.
Flexibility with scaling up and down CPU on the fly when needed, and just stop it when not needed so you don't get charged when it is not running.
It is always patched and always available and you can add storage dynamically as you need it.
Stored procedures functionality is not available so it should be implemented.
HBase is CPU and Memory intensive with large sequential input or output access while as Map Reduce jobs are primarily input or output bound with fixed memory. HBase integrated with Map-reduce jobs will result in random latencies.
It is very expensive product. But not to mention, there's good reasons why it is expensive.
The product should support more cloud based services. When we made the decision to buy the product (which was 20 years ago,) there was no such thing to consider, but moving to a cloud based data warehouse may promise more scalability, agility, and cost reduction. The new version of Data Warehouse came out on the way, but it looks a bit behind compared to other competitors.
Our healthcare data consists of 30% coded data (such as ICD 10 / SNOMED C,T) but the rests is narrative (such as clinical notes.). Oracle is the best for warehousing standardized data, but not a good choice when considering unstructured data, or a mix of the two.
There's really not anything else out there that I've seen comparable for my use cases. HBase has never proven me wrong. Some companies align their whole business on HBase and are moving all of their infrastructure from other database engines to HBase. It's also open source and has a very collaborative community.
Does not require continous attention from the DBA, autonomous features allows the database to perform most of the regular admin tasks without need for human intervention.
Allows to integrate multiple data sources on a central data warehouse, and explode the information stored with different analytic and reporting tools.
Understanding Oracle Cloud Infrastructure is really simple, and Autonomous databases are even more. Using shared or dedicated infrastructure is one of the few things you need to consider at the moment of starting provisioning your Oracle Autonomous Data Warehouse.
Cassandra os great for writes. But with large datasets, depending, not as great as HBASE. Cassandra does support parquet now. HBase still performance issues. Cassandra has use cases of being used as time series. HBase, it fails miserably. GeoSpatial data, Hbase does work to an extent. HA between the two are almost the same.
As I mentioned, I have also worked with Amazon Redshift, but it is not as versatile as Oracle Autonomous Data Warehouse and does not provide a large variety of products. Oracle Autonomous Data Warehouse is also more reliable than Amazon Redshift, hence why I have chosen it
As Hbase is a noSql database, here we don't have transaction support and we cannot do many operations on the data.
Not having the feature of primary or a composite primary key is an issue as the architecture to be defined cannot be the same legacy type. Also the transaction concept is not applicable here.
The way data is printed on console is not so user-friendly. So we had to use some abstraction over HBase (eg apache phoenix) which means there is one new component to handle.
Overall the business objective of all of our clients have been met positively with Oracle Data Warehouse. All of the required analysis the users were able to successfully carry out using the warehouse data.
Using a 3-tier architecture with the Oracle Data Warehouse at the back end the mid-tier has been integrated well. This is big plus in providing the necessary tools for end users of the data warehouse to carry out their analysis.
All of the various BI products (OBIEE, Cognos, etc.) are able to use and exploit the various analytic built-in functionalities of the Oracle Data Warehouse.