Apache Hive vs. Cloudera Data Science Workbench

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Apache Hive
Score 8.1 out of 10
N/A
Apache Hive is database/data warehouse software that supports data querying and analysis of large datasets stored in the Hadoop distributed file system (HDFS) and other compatible systems, and is distributed under an open source license.N/A
Data Science Workbench
Score 6.7 out of 10
N/A
Cloudera Data Science Workbench enables secure self-service data science for the enterprise. It is a collaborative environment where developers can work with a variety of libraries and frameworks.N/A
Pricing
Apache HiveCloudera Data Science Workbench
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache HiveData Science Workbench
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Apache HiveCloudera Data Science Workbench
Top Pros
Top Cons
Features
Apache HiveCloudera Data Science Workbench
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Apache Hive
-
Ratings
Cloudera Data Science Workbench
7.5
2 Ratings
10% below category average
Connect to Multiple Data Sources00 Ratings7.02 Ratings
Extend Existing Data Sources00 Ratings8.02 Ratings
Automatic Data Format Detection00 Ratings7.02 Ratings
MDM Integration00 Ratings8.02 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Apache Hive
-
Ratings
Cloudera Data Science Workbench
7.6
2 Ratings
11% below category average
Visualization00 Ratings7.12 Ratings
Interactive Data Analysis00 Ratings8.02 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Apache Hive
-
Ratings
Cloudera Data Science Workbench
7.8
2 Ratings
4% below category average
Interactive Data Cleaning and Enrichment00 Ratings7.02 Ratings
Data Transformations00 Ratings8.02 Ratings
Data Encryption00 Ratings8.02 Ratings
Built-in Processors00 Ratings8.02 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Apache Hive
-
Ratings
Cloudera Data Science Workbench
7.6
2 Ratings
10% below category average
Multiple Model Development Languages and Tools00 Ratings8.02 Ratings
Automated Machine Learning00 Ratings7.01 Ratings
Single platform for multiple model development00 Ratings7.12 Ratings
Self-Service Model Delivery00 Ratings8.12 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Apache Hive
-
Ratings
Cloudera Data Science Workbench
8.0
2 Ratings
6% below category average
Flexible Model Publishing Options00 Ratings8.12 Ratings
Security, Governance, and Cost Controls00 Ratings7.82 Ratings
Best Alternatives
Apache HiveCloudera Data Science Workbench
Small Businesses
Google BigQuery
Google BigQuery
Score 8.7 out of 10
Jupyter Notebook
Jupyter Notebook
Score 9.0 out of 10
Medium-sized Companies
Cloudera Enterprise Data Hub
Cloudera Enterprise Data Hub
Score 9.0 out of 10
Posit
Posit
Score 9.6 out of 10
Enterprises
Oracle Exadata
Oracle Exadata
Score 8.5 out of 10
Posit
Posit
Score 9.6 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache HiveCloudera Data Science Workbench
Likelihood to Recommend
8.0
(35 ratings)
9.0
(3 ratings)
Likelihood to Renew
10.0
(1 ratings)
-
(0 ratings)
Usability
8.5
(7 ratings)
-
(0 ratings)
Support Rating
7.0
(6 ratings)
7.9
(2 ratings)
User Testimonials
Apache HiveCloudera Data Science Workbench
Likelihood to Recommend
Apache
Software work execution is on a large scale, it is good to use for new projects or organizational changes, data lineage mapping has always been dubious but this one has had good results. You can store and synchronize data from different departments, the storage process can be manual but it is best automated.
Read full review
Cloudera
Organizations which already implemented on-premise Hadoop based Cloudera Data Platform (CDH) for their Big Data warehouse architecture will definitely get more value from seamless integration of Cloudera Data Science Workbench (CDSW) with their existing CDH Platform. However, for organizations with hybrid (cloud and on-premise) data platform without prior implementation of CDH, implementing CDSW can be a challenge technically and financially.
Read full review
Pros
Apache
  • Apache Hive allows use to write expressive solutions to complex problems thanks to its SQL-like syntax.
  • Relatively easy to set up and start using.
  • Very little ramp-up to start using the actual product, documentation is very thorough, there is an active community, and the code base is constantly being improved.
Read full review
Cloudera
  • One single IDE (browser based application) that makes Scala, R, Python integrated under one tool
  • For larger organizations/teams, it lets you be self reliant
  • As it sits on your cluster, it has very easy access of all the data on the HDFS
  • Linking with Github is a very good way to keep the code versions intact
Read full review
Cons
Apache
  • Some queries, particularly complex joins, are still quite slow and can take hours
  • Previous jobs and queries are not stored sometimes
  • Switching to Impala can sometimes be time-consuming (i.e. the system hangs, or is slow to respond).
  • Sometimes, directories and tables don't load properly which causes confusion
Read full review
Cloudera
  • Installation is difficult.
  • Upgrades are difficult.
  • Licensing options are not flexible.
Read full review
Likelihood to Renew
Apache
Since I do not know the second data warehouse solution that integrate with HDFS as well as Hive.
Read full review
Cloudera
No answers on this topic
Usability
Apache
Hive is a very good big data analysis and ad-hoc query platform, which supports scaling also. The BI processes can be easily integrated with Hadoop via the Hive. It can deal with a much larger data set that traditional RDBMS can not. It is a "must-have" component of the big data domain.
Read full review
Cloudera
No answers on this topic
Support Rating
Apache
Apache Hive is a FOSS project and its open source. We need not definitely comment on anything about the support of open source and its developer community. But, it has got tremendous developer support, awesome documentation. I would justify the fact that much support can be gathered from the community backup.
Read full review
Cloudera
Cloudera Data Science Workbench has excellence online resources support such as documentation and examples. On top of that the enterprise license also comes with SLA on opening a ticket to Cloudera Services and support for complaint handling and troubleshooting by email or through a phone call. On top of that it also offers additional paid training services.
Read full review
Alternatives Considered
Apache
Besides Hive, I have used Google BigQuery, which is costly but have very high computation speed. Amazon Redshift is the another product, I used in my recent organisation. Both Redshift and BigQuery are managed solution whereas Hive needs to be managed
Read full review
Cloudera
Both the tools have similar features and have made it pretty easy to install/deploy/use. Depending on your existing platform (Cloudera vs. Azure) you need to pick the Workbench. Another observation is that Cloudera has better support where you can get feedback on your questions pretty fast (unlike MS). As its a new product, I expect MS to be more efficient in handling customers questions.
Read full review
Return on Investment
Apache
  • Apache hive is secured and scalable solution that helps in increasing the overall organization productivity.
  • Apache hive can handle and process large amount of data in a sufficient time manner.
  • It simplifies writing SQL queries, hence helping the organization as most companies use SQL for all query jobs.
Read full review
Cloudera
  • Paid off for demonstration purposes.
Read full review
ScreenShots