Apache Kafka vs. Cloudera Distribution Hadoop (CDH)

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Apache Kafka
Score 8.2 out of 10
N/A
Apache Kafka is an open-source stream processing platform developed by the Apache Software Foundation written in Scala and Java. The Kafka event streaming platform is used by thousands of companies for high-performance data pipelines, streaming analytics, data integration, and mission-critical applications.N/A
Cloudera Distribution Hadoop (CDH)
Score 4.2 out of 10
N/A
CDH is Cloudera’s 100% open source platform distribution, including Apache Hadoop and built specifically to meet enterprise demands. CDH delivers everything needed for enterprise use right out of the box. By integrating Hadoop with more than a dozen other critical open source projects, Cloudera has created a functionally advanced system that helps you perform end-to-end Big Data workflows.N/A
Pricing
Apache KafkaCloudera Distribution Hadoop (CDH)
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache KafkaCloudera Distribution Hadoop (CDH)
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details——
More Pricing Information
Community Pulse
Apache KafkaCloudera Distribution Hadoop (CDH)
Top Pros
Top Cons
Best Alternatives
Apache KafkaCloudera Distribution Hadoop (CDH)
Small Businesses

No answers on this topic

No answers on this topic

Medium-sized Companies
IBM MQ
IBM MQ
Score 9.1 out of 10
Cloudera Manager
Cloudera Manager
Score 9.9 out of 10
Enterprises
IBM MQ
IBM MQ
Score 9.1 out of 10
IBM Analytics Engine
IBM Analytics Engine
Score 7.6 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache KafkaCloudera Distribution Hadoop (CDH)
Likelihood to Recommend
8.3
(19 ratings)
7.0
(1 ratings)
Likelihood to Renew
9.0
(2 ratings)
-
(0 ratings)
Usability
8.0
(2 ratings)
-
(0 ratings)
Support Rating
8.4
(4 ratings)
-
(0 ratings)
User Testimonials
Apache KafkaCloudera Distribution Hadoop (CDH)
Likelihood to Recommend
Apache
Apache Kafka is well-suited for most data-streaming use cases. Amazon Kinesis and Azure EventHubs, unless you have a specific use case where using those cloud PaAS for your data lakes, once set up well, Apache Kafka will take care of everything else in the background. Azure EventHubs, is good for cross-cloud use cases, and Amazon Kinesis - I have no real-world experience. But I believe it is the same.
Read full review
Cloudera
Cloudera Distribution Hadoop (CDH) does a lot of things really well - especially on the analytical front. That being said the product is quite expensive. There are seemingly numerous applications that do the same thing on the functional level that are much more cost effecient for enterprise teams. If I were recommending this to a colleague I would let them know the product will absolutely be able to get the job done for their use case, but there are more efficient options
Read full review
Pros
Apache
  • Really easy to configure. I've used other message brokers such as RabbitMQ and compared to them, Kafka's configurations are very easy to understand and tweak.
  • Very scalable: easily configured to run on multiple nodes allowing for ease of parallelism (assuming your queues/topics don't have to be consumed in the exact same order the messages were delivered)
  • Not exactly a feature, but I trust Kafka will be around for at least another decade because active development has continued to be strong and there's a lot of financial backing from Confluent and LinkedIn, and probably many other companies who are using it (which, anecdotally, is many).
Read full review
Cloudera
  • Solid and robust set of integrations
  • Easy to use and easy to deploy across the enterprise
  • Reliability - never lost any info
  • Simple and clean interface
Read full review
Cons
Apache
  • Sometimes it becomes difficult to monitor our Kafka deployments. We've been able to overcome it largely using AWS MSK, a managed service for Apache Kafka, but a separate monitoring dashboard would have been great.
  • Simplify the process for local deployment of Kafka and provide a user interface to get visibility into the different topics and the messages being processed.
  • Learning curve around creation of broker and topics could be simplified
Read full review
Cloudera
  • The price is quite high competitively speaking
  • Hard to learn more robust functions and custom options without experience
Read full review
Likelihood to Renew
Apache
Kafka is quickly becoming core product of the organization, indeed it is replacing older messaging systems. No better alternatives found yet
Read full review
Cloudera
No answers on this topic
Usability
Apache
Apache Kafka is highly recommended to develop loosely coupled, real-time processing applications. Also, Apache Kafka provides property based configuration. Producer, Consumer and broker contain their own separate property file
Read full review
Cloudera
No answers on this topic
Support Rating
Apache
Support for Apache Kafka (if willing to pay) is available from Confluent that includes the same time that created Kafka at Linkedin so they know this software in and out. Moreover, Apache Kafka is well known and best practices documents and deployment scenarios are easily available for download. For example, from eBay, Linkedin, Uber, and NYTimes.
Read full review
Cloudera
No answers on this topic
Alternatives Considered
Apache
I used other messaging/queue solutions that are a lot more basic than Confluent Kafka, as well as another solution that is no longer in the market called Xively, which was bought and "buried" by Google. In comparison, these solutions offer way fewer functionalities and respond to other needs.
Read full review
Cloudera
In terms of functionality there's not much difference, both get the job done. Amazon was more cost-efficient for our team, but this could vary depending on the size of the business. One thing I did notice was that Cloudera seemed to management and spit out our deployments faster than AWS.
Read full review
Return on Investment
Apache
  • Positive: Get a quick and reliable pub/sub model implemented - data across components flows easily.
  • Positive: it's scalable so we can develop small and scale for real-world scenarios
  • Negative: it's easy to get into a confusing situation if you are not experienced yet or something strange has happened (rare, but it does). Troubleshooting such situations can take time and effort.
Read full review
Cloudera
  • Saves time by automating typically manual processes (data management, lifecyle AI etc)
  • Quick deployments and analytics allow for faster time-to-value
Read full review
ScreenShots