Likelihood to Recommend Apache Pig is best suited for ETL-based data processes. It is good in performance in handling and analyzing a large amount of data. it gives faster results than any other similar tool. It is easy to implement and any user with some initial training or some prior SQL knowledge can work on it. Apache Pig is proud to have a large community base globally.
Read full review Hewlett Packard Enterprise
MapR is more well-suited for people who know what they are doing. I consider MapR the Hadoop distribution professionals use.
Read full review Pros Its performance, ease of use, and simplicity in learning and deployment. Using this tool, we can quickly analyze large amounts of data. It's adequate for map-reducing large datasets and fully abstracted MapReduce. Read full review Hewlett Packard Enterprise
MapR had very fast I/O throughput. The write speed was several times faster than what we could achieve with the other Hadoop vendors (Cloudera and Hortonworks). This is because MapR does not use HDFS, which is essentially a "meta filesystem". HDFS is built on top of the filesystem provided by the OS. MapR has their filesystem called MapR-FS, which is a true filesystem and accesses the raw disk drives. The MapR filesystem is very easy to integrate with other Linux filesystems. When working with HDFS from Apache Hadoop, you usually have to use either the HDFS API or various Hadoop/HDFS command line utilities to interact with HDFS. You cannot use command line utilities native to the host operation system, which is usually Linux. At least, it is not easily done without setting up NFS, gateways, etc. With MapR-FS, you can mount the filesystem within Linux and use the standard Unix commands to manipulate files. The HBase distribution provided by MapR is very similar to the Apache HBase distribution. Cloudera and Hortonworks add GUIs and other various tools on top of their HBase distributions. The MapR HBase distribution is very similar to the Apache distribution, which is nice if you are more accustomed to using Apache HBase. Read full review Cons UDFS Python errors are not interpretable. Developer struggles for a very very long time if he/she gets these errors. Being in early stage, it still has a small community for help in related matters. It needs a lot of improvements yet. Only recently they added datetime module for time series, which is a very basic requirement. Read full review Hewlett Packard Enterprise
It takes time to get latest versions of Apache ecosystem tools released as it has to be adapted. When you have issues related to Mapr-FS or Mapr Tables, its hard to figure them out by ourselves. Sometime new ecosystem tools versions are released without proper QA. Read full review Usability It is quick, fast and easy to implement Apache Pig which makes is quite popular to be used.
Read full review Hewlett Packard Enterprise
Support Rating The documentation is adequate. I'm not sure how large of an external community there is for support.
Read full review Hewlett Packard Enterprise
Alternatives Considered Apache Pig might help to start things faster at first and it was one of the best tool years back but it lacks important features that are needed in the data engineering world right now. Pig also has a steeper learning curve since it uses a proprietary language compared to Spark which can be coded with Python, Java.
Read full review Hewlett Packard Enterprise
I don't believe there is as much support for MapR yet compared to other more widely known products.
Read full review Return on Investment Higher learning curve than other similar technologies so on-boarding new engineers or change ownership of Apache Pig code tends to be a bit of a headache Once the language is learned and understood it can be relatively straightforward to write simple Pig scripts so development can go relatively quickly with a skilled team As distributed technologies grow and improve, overall Apache Pig feels left in the dust and is more legacy code to support than something to actively develop with. Read full review Hewlett Packard Enterprise
Increased employee efficiency for sure. Our clients have various levels of expertise in their deployment and user teams, and we never receive complaints about MapR. MapR is used by one of our financial services clients who uses it for fraud detection and user pattern analysis. They are able to turn around data much faster than they previously had with in-house applications Read full review ScreenShots