Apache Solr is an open-source enterprise search server.
N/A
Kibana
Score 8.2 out of 10
N/A
Kibana allows users to visualize Elasticsearch data and navigate the Elastic Stack so you can do anything from tracking query load to understanding the way requests flow through your apps.
Solr spins up nicely and works effectively for small enterprise environments providing helpful mechanisms for fuzzy searches and facetted searching. For larger enterprises with complex business solutions you'll find the need to hire an expert Solr engineer to optimize the powerful platform to your needs. Internationalization is tricky with Solr and many hosting solutions may limit you to a latin character set.
Kibana integrates seamlessly with Elastic Search which gives us access to parse and analyze data generated from our systems in order to make decisions. Also, Kibana helps us create insightful reports and dashboards that give us insights into the end-users usage on the system and helps us find the root cause of issues as well.
Easy to get started with Apache Solr. Whether it is tackling a setup issue or trying to learn some of the more advanced features, there are plenty of resources to help you out and get you going.
Performance. Apache Solr allows for a lot of custom tuning (if needed) and provides great out of the box performance for searching on large data sets.
Maintenance. After setting up Solr in a production environment there are plenty of tools provided to help you maintain and update your application. Apache Solr comes with great fault tolerance built in and has proven to be very reliable.
These examples are due to the way we use Apache Solr. I think we have had the same problems with other NoSQL databases (but perhaps not the same solution). High data volumes of data and a lot of users were the causes.
We have lot of classifications and lot of data for each classification. This gave us several problems:
First: We couldn't keep all our data in Solr. Then we have all data in our MySQL DB and searching data in Solr. So we need to be sure to update and match the 2 databases in the same time.
Second: We needed several load balanced Solr databases.
Third: We needed to update all the databases and keep old data status.
If I don't speak about problems due to our lack of experience, the main Solr problem came from frequency of updates vs validation of several database. We encountered several locks due to this (our ops team didn't want to use real clustering, so all DB weren't updated). Problem messages were not always clear and we several days to understand the problems.
Kibana has a better usability experience, the core features I was using existed in all of them. I liked more in Kibana how you can easily create dashboards, charts, and reports without the need to be a tech person.