Likelihood to Recommend Solr spins up nicely and works effectively for small enterprise environments providing helpful mechanisms for fuzzy searches and facetted searching. For larger enterprises with complex business solutions you'll find the need to hire an expert Solr engineer to optimize the powerful platform to your needs. Internationalization is tricky with Solr and many hosting solutions may limit you to a latin character set.
Read full review Kibana integrates seamlessly with Elastic Search which gives us access to parse and analyze data generated from our systems in order to make decisions. Also, Kibana helps us create insightful reports and dashboards that give us insights into the end-users usage on the system and helps us find the root cause of issues as well.
Read full review Pros Easy to get started with Apache Solr. Whether it is tackling a setup issue or trying to learn some of the more advanced features, there are plenty of resources to help you out and get you going. Performance. Apache Solr allows for a lot of custom tuning (if needed) and provides great out of the box performance for searching on large data sets. Maintenance. After setting up Solr in a production environment there are plenty of tools provided to help you maintain and update your application. Apache Solr comes with great fault tolerance built in and has proven to be very reliable. Read full review Fast searches with powerful index. Beautiful data visualizations. Real-time observability. Read full review Cons These examples are due to the way we use Apache Solr. I think we have had the same problems with other NoSQL databases (but perhaps not the same solution). High data volumes of data and a lot of users were the causes. We have lot of classifications and lot of data for each classification. This gave us several problems: First: We couldn't keep all our data in Solr. Then we have all data in our MySQL DB and searching data in Solr. So we need to be sure to update and match the 2 databases in the same time. Second: We needed several load balanced Solr databases. Third: We needed to update all the databases and keep old data status. If I don't speak about problems due to our lack of experience, the main Solr problem came from frequency of updates vs validation of several database. We encountered several locks due to this (our ops team didn't want to use real clustering, so all DB weren't updated). Problem messages were not always clear and we several days to understand the problems. Read full review Some performance issues with large datasets. Linking to dashboards makes extremely long urls. Lack of reports. Read full review Support Rating We did not use the official Kibana support. Documentation was easy enough to follow.
Read full review Alternatives Considered Apache Solr is a ready-to-use product addressing specific use cases such as keyword searches from a huge set of data documents.
Read full review Kibana has a better usability experience, the core features I was using existed in all of them. I liked more in Kibana how you can easily create dashboards, charts, and reports without the need to be a tech person.
Read full review Return on Investment Improved response time in e-commerce websites. Developer's job is easier with Apache Solr in use. Customization in filtering and sorting is possible. Read full review Issues that affect checkout experiences for customers are able to be prioritized and solved quickly. We are able to more efficiently use resources due to the automation of reporting alerts. Decreasing employee resources needed. Visualization allows us to quickly share issues and explain to coworkers in order to escalate issues that can cost our bottom line. Read full review ScreenShots