The Appen platform combines human intelligence from over one million people all over the world with models to create training data for ML projects. Appen users can upload data to the Appen platform, and they provide the annotations, judgments, and labels needed to help create ground truth for models.
It is well suited for the users and potential employee who are free of any job perspective and need their free time to be utilized. Users can use their free time to be used for submission of interesting tasks.
Whereas the number of tasks are very less and processing time is also very extensive and recruitment takes time more.
Paxata can be highly useful to someone who doesn't like/have any experience with writing codes to treat data before using it as input into BI dashboards. Paxata can accelerate data cleaning in environments where a large amount of unclean data is generated and business decisions on the go are required. It performs really well while dealing with natural language.
Appen offers projects mostly related to my native language and also according to my expertise . It offers very interesting projects to be completed , which requires not very expertise and less time to be completed for each task. It is also very convenient to use after selection for the task and also well rewarding against the time consumed for the task completion.
Paxata is a much better tool when it comes to handling natural language but Talend provides recommendations on how to impute missing values and outliers. Paxata provides recommendations on dataset tie-ups and joins but Talend doesn't provide any such recommendations. In paxata you can visualize distribution of data in a column and filter them by dragging and selecting the section you'd like to retain