Denodo is the eponymous data integration platform from the global company headquartered in Silicon Valley.
N/A
HPE Ezmeral Data Fabric (MapR)
Score 9.4 out of 10
N/A
HPE Ezmeral Data Fabric (formerly MapR, acquired by HPE in 2019) is a software-defined datastore and file system that simplifies data management and analytics by unifying data across core, edge, and multicloud sources into a single platform. Just as a loom weaves multiple threads into a single piece of fabric, HPE Ezmeral Data Fabric weaves distributed data into a single enterprise-wide data layer that ingests, processes, and stores data once and then makes it available for reuse across multiple…
Denodo allows us to create and combine new views to create a virtual repository and APIs without a single line of code. It is excellent because it can present connectors with a view format for downstream consumers by flattening a JSON file. Reading or connecting to various sources and displaying a tabular view is an excellent feature. The product's technical data catalog is well-organized.
MapR had very fast I/O throughput. The write speed was several times faster than what we could achieve with the other Hadoop vendors (Cloudera and Hortonworks). This is because MapR does not use HDFS, which is essentially a "meta filesystem". HDFS is built on top of the filesystem provided by the OS. MapR has their filesystem called MapR-FS, which is a true filesystem and accesses the raw disk drives.
The MapR filesystem is very easy to integrate with other Linux filesystems. When working with HDFS from Apache Hadoop, you usually have to use either the HDFS API or various Hadoop/HDFS command line utilities to interact with HDFS. You cannot use command line utilities native to the host operation system, which is usually Linux. At least, it is not easily done without setting up NFS, gateways, etc. With MapR-FS, you can mount the filesystem within Linux and use the standard Unix commands to manipulate files.
The HBase distribution provided by MapR is very similar to the Apache HBase distribution. Cloudera and Hortonworks add GUIs and other various tools on top of their HBase distributions. The MapR HBase distribution is very similar to the Apache distribution, which is nice if you are more accustomed to using Apache HBase.
Caching - but I am sure it will be improved by now. There were times when we expected the cache to be refreshed but it was stale.
Schema generation of endpoints from API response was sometimes incomplete as not all API calls returned all the fields. Will be good to have an ability to load the schema itself (XSD/JSON/Soap XML etc).
Denodo exposed web services were in preliminary stage when we used; I'm sure it will be improved by now.
Export/Import deployment, while it was helpful, there were unexpected issues without any errors during deployment. Issues were only identified during testing. Some views were not created properly and did not work. If it was working in the environment from where it was exported from, it should work in the environment where it is imported.
Denodo is a tool to rapidly mash data sources together and create meaningful datasets. It does have its downfalls though. When you create larger, more complex datasets, you will most likely need to cache your datasets, regardless of how proper your joins are set up. Since DV takes data from multiple environments, you are taxing the corporate network, so you need to be conscious of how much data you are sending through the network and truly understand how and when to join datasets due to this.
Increased employee efficiency for sure. Our clients have various levels of expertise in their deployment and user teams, and we never receive complaints about MapR.
MapR is used by one of our financial services clients who uses it for fraud detection and user pattern analysis. They are able to turn around data much faster than they previously had with in-house applications