Hortonworks Data Platform (HDP) is an open source framework for distributed storage and processing of large, multi-source data sets. HDP modernizes IT infrastructure and keeps data secure—in the cloud or on-premises—while helping to drive new revenue streams, improve customer experience, and control costs.
Hortonworks merged with Cloudera in eary 2019.
N/A
HPE Ezmeral Data Fabric (MapR)
Score 9.4 out of 10
N/A
HPE Ezmeral Data Fabric (formerly MapR, acquired by HPE in 2019) is a software-defined datastore and file system that simplifies data management and analytics by unifying data across core, edge, and multicloud sources into a single platform. Just as a loom weaves multiple threads into a single piece of fabric, HPE Ezmeral Data Fabric weaves distributed data into a single enterprise-wide data layer that ingests, processes, and stores data once and then makes it available for reuse across multiple…
N/A
Pricing
Hortonworks Data Platform
HPE Ezmeral Data Fabric (MapR)
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Hortonworks Data Platform
HPE Ezmeral Data Fabric (MapR)
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Hortonworks Data Platform
HPE Ezmeral Data Fabric (MapR)
Considered Both Products
Hortonworks Data Platform
Verified User
Engineer
Chose Hortonworks Data Platform
Hortonworks Data Platform is on par with, if not better than, Cloudera or MapR. It provides a big list of components (25-30) that you can pick and use based on your needs. It provides an easy and convenient way to add/remove any of those. It provides a good way of integrating …
While Apache Hadoop is completely open sourced, Hortonworks Data Platform offers support as well as keeps pace with the open source versions. Also, the HDP open sources its own products, thus giving back to the community. I find using the Hortonworks Data Platform more …
Hortonworks Data Platform is more efficient to use than Apache since you don't need to configure everything by yourself. Again, Cloudera, MapR, and IBM is proprietary software.
We supported all three Hadoop vendors with our Hadoop RDBMS product. Here's how I see the commercial Hadoop distribution world. If you need raw performance and don't mind proprietary technology, go with MapR. If you care about the most pure open source, go with Hortonworks. If …
Hortonworks and Cloudera are both sort of hacky. We have to do a lot of extra steps to automate those two. MapR has far fewer issues and doesn't force you into a once size fits all deployment scenario. There are multiple ways to deploy and some are more amenable to automation, …
When we were shopping, Mapr had the momentum, high availability even on Hadoop 1.x, an improved file system and better a central control system. Now it looks like the situation has changed a lot.
I find HDP easy to use and solves most of the problems for people looking to manage their big data. Evaluating the Hortonworks Data Platform is easy as it is free to download and install in your cluster. Single node cluster available as Sandbox is also easy for POCs.
It does a good job of packaging a lot of big data components into bundles and lets you use the ones you are interested in or need. It supports an extensive list of components which lets us solve many problems.
It provides the ability to manage installations and maintenance using Apache Ambari. It helps us in using management packs to install/upgrade components easily. It also helps us add, remove components, add, remove hosts, perform upgrades in a convenient manner. It also provides alerts and notifications and monitors the environment.
What they excel in is packaging open source components that are relevant and are useful to solve and complement each other as well as contribute to enhancing those components. They do a great job in the community to keep on top of what would be useful to users, fixing bugs and working with other companies and individuals to make the platform better.
MapR had very fast I/O throughput. The write speed was several times faster than what we could achieve with the other Hadoop vendors (Cloudera and Hortonworks). This is because MapR does not use HDFS, which is essentially a "meta filesystem". HDFS is built on top of the filesystem provided by the OS. MapR has their filesystem called MapR-FS, which is a true filesystem and accesses the raw disk drives.
The MapR filesystem is very easy to integrate with other Linux filesystems. When working with HDFS from Apache Hadoop, you usually have to use either the HDFS API or various Hadoop/HDFS command line utilities to interact with HDFS. You cannot use command line utilities native to the host operation system, which is usually Linux. At least, it is not easily done without setting up NFS, gateways, etc. With MapR-FS, you can mount the filesystem within Linux and use the standard Unix commands to manipulate files.
The HBase distribution provided by MapR is very similar to the Apache HBase distribution. Cloudera and Hortonworks add GUIs and other various tools on top of their HBase distributions. The MapR HBase distribution is very similar to the Apache distribution, which is nice if you are more accustomed to using Apache HBase.
Since it doesn't come with propriety tools for big data management, additional integration is need (for query handling, search, etc).
It was very straightforward to store clinical data without relations, such as data from sensors of a medical device. But it has limitations when needed to combine the data with other clinical data in structured format (e.g. lab results, diagnosis).
Overall look and feel of front-end management tools (e.g. monitoring) are not good. It is not bad but it doesn't look professional.
We chose [Hortonworks Data Platform] because it's free and because [it] was an IBM partner, suggested as big data platform after biginsights platform.
You can install in more physical computer without high specs, then you can use it in order to learn how to deploy, configure a complete big data cluster.
We installed also in a cloud infrastructure of 5 virtual machine
Increased employee efficiency for sure. Our clients have various levels of expertise in their deployment and user teams, and we never receive complaints about MapR.
MapR is used by one of our financial services clients who uses it for fraud detection and user pattern analysis. They are able to turn around data much faster than they previously had with in-house applications