HPE Ezmeral Data Fabric (MapR) vs. MongoDB

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
HPE Ezmeral Data Fabric (MapR)
Score 9.4 out of 10
N/A
HPE Ezmeral Data Fabric (formerly MapR, acquired by HPE in 2019) is a software-defined datastore and file system that simplifies data management and analytics by unifying data across core, edge, and multicloud sources into a single platform. Just as a loom weaves multiple threads into a single piece of fabric, HPE Ezmeral Data Fabric weaves distributed data into a single enterprise-wide data layer that ingests, processes, and stores data once and then makes it available for reuse across multiple…N/A
MongoDB
Score 8.4 out of 10
N/A
MongoDB is an open source document-oriented database system. It is part of the NoSQL family of database systems. Instead of storing data in tables as is done in a "classical" relational database, MongoDB stores structured data as JSON-like documents with dynamic schemas (MongoDB calls the format BSON), making the integration of data in certain types of applications easier and faster.
$0.10
million reads
Pricing
HPE Ezmeral Data Fabric (MapR)MongoDB
Editions & Modules
No answers on this topic
Shared
$0
per month
Serverless
$0.10million reads
million reads
Dedicated
$57
per month
Offerings
Pricing Offerings
HPE Ezmeral Data Fabric (MapR)MongoDB
Free Trial
NoYes
Free/Freemium Version
NoYes
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional DetailsFully managed, global cloud database on AWS, Azure, and GCP
More Pricing Information
Community Pulse
HPE Ezmeral Data Fabric (MapR)MongoDB
Top Pros
Top Cons
Features
HPE Ezmeral Data Fabric (MapR)MongoDB
NoSQL Databases
Comparison of NoSQL Databases features of Product A and Product B
HPE Ezmeral Data Fabric (MapR)
-
Ratings
MongoDB
9.9
39 Ratings
11% above category average
Performance00 Ratings9.939 Ratings
Availability00 Ratings10.039 Ratings
Concurrency00 Ratings9.939 Ratings
Security00 Ratings9.939 Ratings
Scalability00 Ratings10.039 Ratings
Data model flexibility00 Ratings10.039 Ratings
Deployment model flexibility00 Ratings10.038 Ratings
Best Alternatives
HPE Ezmeral Data Fabric (MapR)MongoDB
Small Businesses

No answers on this topic

IBM Cloudant
IBM Cloudant
Score 7.7 out of 10
Medium-sized Companies
Cloudera Manager
Cloudera Manager
Score 9.9 out of 10
IBM Cloudant
IBM Cloudant
Score 7.7 out of 10
Enterprises
IBM Analytics Engine
IBM Analytics Engine
Score 7.8 out of 10
IBM Cloudant
IBM Cloudant
Score 7.7 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
HPE Ezmeral Data Fabric (MapR)MongoDB
Likelihood to Recommend
7.2
(4 ratings)
10.0
(79 ratings)
Likelihood to Renew
-
(0 ratings)
10.0
(67 ratings)
Usability
-
(0 ratings)
9.9
(15 ratings)
Availability
-
(0 ratings)
9.0
(1 ratings)
Support Rating
-
(0 ratings)
9.6
(13 ratings)
Implementation Rating
-
(0 ratings)
8.4
(2 ratings)
User Testimonials
HPE Ezmeral Data Fabric (MapR)MongoDB
Likelihood to Recommend
Hewlett Packard Enterprise
MapR is more well-suited for people who know what they are doing. I consider MapR the Hadoop distribution professionals use.
Read full review
MongoDB
If asked by a colleague I would highly recommend MongoDB. MongoDB provides incredible flexibility and is quick and easy to set up. It also provides extensive documentation which is very useful for someone new to the tool. Though I've used it for years and still referenced the docs often. From my experience and the use cases I've worked on, I'd suggest using it anywhere that needs a fast, efficient storage space for non-relational data. If a relational database is needed then another tool would be more apt.
Read full review
Pros
Hewlett Packard Enterprise
  • MapR had very fast I/O throughput. The write speed was several times faster than what we could achieve with the other Hadoop vendors (Cloudera and Hortonworks). This is because MapR does not use HDFS, which is essentially a "meta filesystem". HDFS is built on top of the filesystem provided by the OS. MapR has their filesystem called MapR-FS, which is a true filesystem and accesses the raw disk drives.
  • The MapR filesystem is very easy to integrate with other Linux filesystems. When working with HDFS from Apache Hadoop, you usually have to use either the HDFS API or various Hadoop/HDFS command line utilities to interact with HDFS. You cannot use command line utilities native to the host operation system, which is usually Linux. At least, it is not easily done without setting up NFS, gateways, etc. With MapR-FS, you can mount the filesystem within Linux and use the standard Unix commands to manipulate files.
  • The HBase distribution provided by MapR is very similar to the Apache HBase distribution. Cloudera and Hortonworks add GUIs and other various tools on top of their HBase distributions. The MapR HBase distribution is very similar to the Apache distribution, which is nice if you are more accustomed to using Apache HBase.
Read full review
MongoDB
  • Being a JSON language optimizes the response time of a query, you can directly build a query logic from the same service
  • You can install a local, database-based environment rather than the non-relational real-time bases such a firebase does not allow, the local environment is paramount since you can work without relying on the internet.
  • Forming collections in Mango is relatively simple, you do not need to know of query to work with it, since it has a simple graphic environment that allows you to manage databases for those who are not experts in console management.
Read full review
Cons
Hewlett Packard Enterprise
  • It takes time to get latest versions of Apache ecosystem tools released as it has to be adapted.
  • When you have issues related to Mapr-FS or Mapr Tables, its hard to figure them out by ourselves.
  • Sometime new ecosystem tools versions are released without proper QA.
Read full review
MongoDB
  • An aggregate pipeline can be a bit overwhelming as a newcomer.
  • There's still no real concept of joins with references/foreign keys, although the aggregate framework has a feature that is close.
  • Database management/dev ops can still be time-consuming if rolling your own deployments. (Thankfully there are plenty of providers like Compose or even MongoDB's own Atlas that helps take care of the nitty-gritty.
Read full review
Likelihood to Renew
Hewlett Packard Enterprise
No answers on this topic
MongoDB
I am looking forward to increasing our SaaS subscriptions such that I get to experience global replica sets, working in reads from secondaries, and what not. Can't wait to be able to exploit some of the power that the "Big Boys" use MongoDB for.
Read full review
Usability
Hewlett Packard Enterprise
No answers on this topic
MongoDB
NoSQL database systems such as MongoDB lack graphical interfaces by default and therefore to improve usability it is necessary to install third-party applications to see more visually the schemas and stored documents. In addition, these tools also allow us to visualize the commands to be executed for each operation.
Read full review
Support Rating
Hewlett Packard Enterprise
No answers on this topic
MongoDB
Finding support from local companies can be difficult. There were times when the local company could not find a solution and we reached a solution by getting support globally. If a good local company is found, it will overcome all your problems with its global support.
Read full review
Implementation Rating
Hewlett Packard Enterprise
No answers on this topic
MongoDB
While the setup and configuration of MongoDB is pretty straight forward, having a vendor that performs automatic backups and scales the cluster automatically is very convenient. If you do not have a system administrator or DBA familiar with MongoDB on hand, it's a very good idea to use a 3rd party vendor that specializes in MongoDB hosting. The value is very well worth it over hosting it yourself since the cost is often reasonable among providers.
Read full review
Alternatives Considered
Hewlett Packard Enterprise
I don't believe there is as much support for MapR yet compared to other more widely known products.
Read full review
MongoDB
We have [measured] the speed in reading/write operations in high load and finally select the winner = MongoDBWe have [not] too much data but in case there will be 10 [times] more we need Cassandra. Cassandra's storage engine provides constant-time writes no matter how big your data set grows. For analytics, MongoDB provides a custom map/reduce implementation; Cassandra provides native Hadoop support.
Read full review
Return on Investment
Hewlett Packard Enterprise
  • Increased employee efficiency for sure. Our clients have various levels of expertise in their deployment and user teams, and we never receive complaints about MapR.
  • MapR is used by one of our financial services clients who uses it for fraud detection and user pattern analysis. They are able to turn around data much faster than they previously had with in-house applications
Read full review
MongoDB
  • Open Source w/ reasonable support costs have a direct, positive impact on the ROI (we moved away from large, monolithic, locked in licensing models)
  • You do have to balance the necessary level of HA & DR with the number of servers required to scale up and scale out. Servers cost money - so DR & HR doesn't come for free (even though it's built into the architecture of MongoDB
Read full review
ScreenShots

MongoDB Screenshots

Screenshot of Screenshot of Screenshot of Screenshot of Screenshot of Screenshot of