Likelihood to Recommend Hewlett Packard Enterprise
MapR is more well-suited for people who know what they are doing. I consider MapR the Hadoop distribution professionals use.
Read full review Presto is for interactive simple queries, where
Hive is for reliable processing. If you have a fact-dim join, presto is great..however for fact-fact joins presto is not the solution.. Presto is a great replacement for proprietary technology like
Vertica Read full review Pros Hewlett Packard Enterprise
MapR had very fast I/O throughput. The write speed was several times faster than what we could achieve with the other Hadoop vendors (Cloudera and Hortonworks). This is because MapR does not use HDFS, which is essentially a "meta filesystem". HDFS is built on top of the filesystem provided by the OS. MapR has their filesystem called MapR-FS, which is a true filesystem and accesses the raw disk drives. The MapR filesystem is very easy to integrate with other Linux filesystems. When working with HDFS from Apache Hadoop, you usually have to use either the HDFS API or various Hadoop/HDFS command line utilities to interact with HDFS. You cannot use command line utilities native to the host operation system, which is usually Linux. At least, it is not easily done without setting up NFS, gateways, etc. With MapR-FS, you can mount the filesystem within Linux and use the standard Unix commands to manipulate files. The HBase distribution provided by MapR is very similar to the Apache HBase distribution. Cloudera and Hortonworks add GUIs and other various tools on top of their HBase distributions. The MapR HBase distribution is very similar to the Apache distribution, which is nice if you are more accustomed to using Apache HBase. Read full review Linking, embedding links and adding images is easy enough. Once you have become familiar with the interface, Presto becomes very quick & easy to use (but, you have to practice & repeat to know what you are doing - it is not as intuitive as one would hope). Organizing & design is fairly simple with click & drag parameters. Read full review Cons Hewlett Packard Enterprise
It takes time to get latest versions of Apache ecosystem tools released as it has to be adapted. When you have issues related to Mapr-FS or Mapr Tables, its hard to figure them out by ourselves. Sometime new ecosystem tools versions are released without proper QA. Read full review Presto was not designed for large fact fact joins. This is by design as presto does not leverage disk and used memory for processing which in turn makes it fast.. However, this is a tradeoff..in an ideal world, people would like to use one system for all their use cases, and presto should get exhaustive by solving this problem. Resource allocation is not similar to YARN and presto has a priority queue based query resource allocation..so a query that takes long takes longer...this might be alleviated by giving some more control back to the user to define priority/override. UDF Support is not available in presto. You will have to write your own functions..while this is good for performance, it comes at a huge overhead of building exclusively for presto and not being interoperable with other systems like Hive, SparkSQL etc. Read full review Alternatives Considered Hewlett Packard Enterprise
I don't believe there is as much support for MapR yet compared to other more widely known products.
Read full review Presto is good for a templated design appeal. You cannot be too creative via this interface - but, the layout and options make the finalized visual product appealing to customers. The other design products I use are for different purposes and not really comparable to Presto.
Read full review Return on Investment Hewlett Packard Enterprise
Increased employee efficiency for sure. Our clients have various levels of expertise in their deployment and user teams, and we never receive complaints about MapR. MapR is used by one of our financial services clients who uses it for fraud detection and user pattern analysis. They are able to turn around data much faster than they previously had with in-house applications Read full review Presto has helped scale Uber's interactive data needs. We have migrated a lot out of proprietary tech like Vertica. Presto has helped build data driven applications on its stack than maintain a separate online/offline stack. Presto has helped us build data exploration tools by leveraging it's power of interactive and is immensely valuable for data scientists. Read full review ScreenShots