Oracle Autonomous Data Warehouse is a cloud data warehouse service that
eliminates virtually all the complexities of operating a data warehouse,
securing data, and developing data-driven applications. It automates
provisioning, configuring, securing, tuning, scaling, patching, backing
up, and repairing of the data warehouse.
N/A
SingleStore
Score 9.3 out of 10
N/A
SingleStore aims to deliver the world’s fastest distributed SQL database for data-intensive applications: SingleStoreDB, which combines transactional + analytical workloads in a single platform.
Including other products, Oracle is very specialized in business support. Choosing Oracle Data Warehouse would be a safe choice for an enterprise-level company (more than a thousand employees). Healthcare organizations may want to consider Oracle, as they are typically conservative with privacy and security issues with patient data. Although cloud-based systems are widely being adopted in the healthcare industry (such as population research or genomics), core data sets (such as patients' sensitive medical records) may be better stored with a home-grown data center and warehouse solution.
Our workload is 100% analytical. We also have to ingest a lot of data each month. SingleStore is a perfect match for our needs because it has fast pipelines for data ingestion and great performance, even in large and complex queries. We need fast response times for our user interface and great performance in our ETL processes, which are rather complicated. SingleStore handles all of this very well.
Able to handle very large data sizes efficiently from a performance, high availability and manageability perspective. This is accomplished through the Oracle Partitioning functionality. Partitioning allows large segments (tables, IOT index-organized tables, indexes) to be broken into smaller segments at the physical layer but treated as a whole at the logical layer.
Provides support for dual-format architecture through Oracle In-Memory functionality. Without any change to application code one can obtain in-memory performance. This functionality enables us to have the tables represented in both the row format and the column format using in-memory format. This is a huge boost for BI/analytic queries since the Oracle optimizer is able to intelligently choose the appropriate format.
Provision to materialize a subset of table data or table joins. This is through materialized views and the optimizer will rewrite the query against the base tables to make use of this materialized view. This provides a huge performance boost and is critical in VLDBs as in a data warehouse. The query rewrite is fully transparent to users.
Provides multiple compression capabilities. This is very useful not only for deducing the storage foot print but as well as increase performance at different layers of the infrastructure including query performance. The compression functionality can be applied against both structured and unstructured data.
With the advent of Engineered Systems (Exadata, Database Machine, SuperCluster) there are specific features and functionalities that can further boost the Oracle data warehouse. These are related to consolidation, Smart Scan, Storage Indexes, EHCC (Exadata hybrid columnar compression) and much more.
RAC - Real Application Clusters (with 2 or more nodes) provides functionality for high availability, performance and scaling as the work load increases. The parallelism is provided both within a node and as well as across nodes. If for any reason a node goes down the data warehouse is still available through other nodes and the running queries are transparently failed over to the surviving nodes.
We wish the product had better support for High Availability of the aggregator. Currently the indexes generated by the two different aggregators are not in the same sequential space and so our apps have more burden to deal with HA.
More tools for debugging issues such as high memory usage would be good.
The price was the one that kept us away from purchasing for the first few years. Now we are able to afford due to a promotion that gives it at 25% of the list price. Not sure if we'll continue after the promotion offer expires in another 2 years.
[Until it is] supported on AWS ECS containers, I will reserve a higher rating for SingleStore. Right now it works well on EC2 and serves our current purpose, [but] would look forward to seeing SingleStore respond to our urge of feature in a shorter time period with high quality and security.
SingleSore can perform transactions and operational analytics together in order to utilize their data and transform their business. SingleStore delivers a database that performs both functions. Before using SingleStore, we had different systems for OLTP queries and for OLAP analyses, and a number of ETL packages to bring data from the OLTP system to Reporting database.
Very responsive to trouble tickets - Often, I think, the SingleStore's monitoring systems have already alerted the engineers by the time I get around to writing a ticket (about 10 - 20 mins after we see a problem). I feel like things are escalated nicely and SingleStore takes resolving trouble tickets seriously. Also SingleStore follows up after incidents to with a post mortem and actionable takaways to improve the product. Very satisfied here.
We allowed 2-3 months for a thorough evaluation. We saw pretty quickly that we were likely to pick SingleStore, so we ported some of our stored procedures to SingleStore in order to take a deeper look. Two SingleStore people worked closely with us to ensure that we did not have any blocking problems. It all went remarkably smoothly.
Oracle is, in my opinion, the top dog in this space. I feel like the other vendors are playing catch-up to where Oracle is right now. It is also likely the most expensive option out there.
Vertica, Snowflake, SQL Server, Azure Data Warehouse, PowerBI, Aerospike, etc. From what I've seen MemSQL is well worth the cost when latency and data freshness needs are high, i.e. you need a lot of queries to run with UI latency (the query itself takes less than a second or so), with very fresh streaming fact and dimensional data. It will be more expensive per "unit of performance" but if you need that performance then it'll get the job done.
On-prem Vertica (note, not Eon) provides more knobs for optimizing a particular data set and set of queries against it and performs as well or better in a single table, fact table queries. It will also scale to data size more cheaply due to its on-disk model. For large queries against large data sets where data freshness isn't as important (and latency either is or isn't), I'd take Vertica, although if you need to do a lot of joins that will struggle). However, as they still are exclusively columnar, dimension table updates, and recalls based on them, can only be tuned to happen so fast (we could do much better than 10 seconds with 10-100 updates per second for raw replication, and Vertica's joins are always slow so recalls were worse).
Snowflake suffers similarly to Vertica in the data freshness, replication, and re-calc area; SF also doesn't give as many knobs to turn as Vertica for data set optimization but seems to be better at joins. If you have a lot of queries to run against a lot of data and joins are limited, you need query latency low and consistent but you don't need a ton of freshness, I'd stick with Vertica. If joins matter more, or you can accept notably-but-not-terribly worse performance, then Snowflake is fine and cheaper from what we've seen. (Again, I can't speak to SF vs Vertica Eon).
SQL Server and ADW we couldn't get to perform as well as the other options, but I'll say we didn't try that hard on those.
Aerospike is amazing as a KV store; however for OLAP use cases where you want to balance performance against the flexibility of queries against general event (time series) data (i.e. be able to roll up to different grains) then KV becomes challenging.
PBI is great if you want an integrated BI tool, but if you want an OLAP solution to build against, with some particular scale or performance needs to be mentioned above, I'd go with one of these other solutions. It really can be great for letting non-tech folks build relatively small data sets and quick insights for customers (internal or external), great leverage in that case.
As the overall performance and functionality were expanded, we are able to deliver our data much faster than before, which increases the demand for data.
Metadata is available in the platform by default, like metadata on the pipelines. Also, the information schema has lots of metadata, making it easy to load our assets to the data catalog.