Skip to main content
TrustRadius
Apache Kafka

Apache Kafka

Overview

What is Apache Kafka?

Apache Kafka is an open-source stream processing platform developed by the Apache Software Foundation written in Scala and Java. The Kafka event streaming platform is used by thousands of companies for high-performance data pipelines, streaming analytics, data integration, and mission-critical…

Read more

Learn from top reviewers

Return to navigation

Product Details

What is Apache Kafka?

Apache Kafka is an open-source stream processing platform developed by the Apache Software Foundation written in Scala and Java. The Kafka event streaming platform is used by thousands of companies for high-performance data pipelines, streaming analytics, data integration, and mission-critical applications.

Apache Kafka Technical Details

Operating SystemsUnspecified
Mobile ApplicationNo
Return to navigation

Comparisons

View all alternatives
Return to navigation

Reviews From Top Reviewers

(1-5 of 10)

Excellent tech to manage short messages with high frequency

Rating: 10 out of 10
July 11, 2021
Vetted Review
Verified User
Apache Kafka
2 years of experience
Kafka is being used for sending log information in real time and there[fore] can monitor apps and send these events to feed other apps. It's the core for send[ing] and receiv[ing] messages due to quantity of messages per second. Helps us to scale and manage the common errors in this type of problem.
  • Scalable
  • Fast
  • Performance
  • Open source
Cons
  • Performance security
  • Monitoring
  • Configuration
Send a few events in a few time slots: Kafka is designed for high computing events. If you application doesn't work with more [than] 25.000 messages, Kafka isn't the correct solution.

Send events with high size: don't try working with events with more [than] 1 Mb, the performance is very poor.

Send event without compression: if you work with any compression with messages this will help the performance in net traffic and speed of pipeline

Apache Kafka: Where messaging meets storage

Rating: 7 out of 10
April 09, 2021
Vetted Review
Verified User
Apache Kafka
4 years of experience
Apache Kafka is used by our company as the "next generation" of messaging/data-streaming pipeline solutions, to replace our old legacy JMS-based messaging solution and enable the modern streaming API based applications. When it is used for messaging purposes, we shift the responsibility of data replay from the message source (publisher application) to the message destination (consumer application). This flexibility resolved the legacy issue of sources replaying the messages but impacting all subscribers to the same topic. When Kafka is used as the streaming pipeline, it is integrated seamlessly with the Spark/Spring Stream-based analytic solutions, as it is also a kind of distributed storage.
  • Undoubtedly, Kafka's high throughput and low latency feature are the highlights.
  • Kafka can scale horizontally very well.
Cons
  • The CLI and configuration details need to be worked out more in-depth. The naming convention of configuration is not so good and causing a lot of confusion. Sometimes there are too many configuration parameters to tune--requires the adopter to understand a lot of tricks like NFS entrapment, for example.
  • Lack of a good monitoring solution so far
When it is used as messaging, Apache Kafka is majorly preferred when the use case is Pub/Sub typed. It is not suitable to deal with the end-to-end queue use case nor the request/response paradigm. When Apache Kafka is used for streaming purposes, it doesn't have the native implementation of the query language, it is just a pipeline. You still need to put a lot of programming efforts into your streaming client-side to take care of those analytic requirements.

Apache Kafka, the F1 of messaging

Rating: 9 out of 10
March 01, 2018
JF
Vetted Review
Verified User
Apache Kafka
3 years of experience
Apache Kafka is becoming the new standard for messaging at our organization. Originally we limited the use to big data environments and projects but as the technology is becoming more mature we think it will eventually replace classical messaging software.
  • High volume/performance throughput environments
  • Low latency projects
  • Multiple consumers for the same data, reprocessing, long-lasting information
Cons
  • Still a bit inmature, some clients have required recoding in the last few versions
  • New feaures coming very fast, several upgrades a year may be required
  • Not many commercial companies provide support
Apache Kafka is extremely well suited in near real-time scenarios, high volume or multi-location projects. It can solve escalation problems for a fraction of the cost other solutions do and it has the flexibility of open source scenarios.

Kafka for tracking changes

Rating: 8 out of 10
May 30, 2023
AK
Vetted Review
Verified User
Apache Kafka
3 years of experience
Verified on LinkedIn
We use Apache Kafka to stream order information across systems. An order may go through certain updates through its lifecycle. These updates need to be communicated to the systems in near real time and we rely on Kafka for this.Our business use case is to take these orders up with the insurance companies for approval and thus the order information need to be up to date. Kafka has been excellent at doing this so far.
  • Receiving messages from publisher and sending to consumer in FIFO manner
  • Handling of errors using Dead Letter Queue when message could not be consumed on the consumer end
  • Fault tolerance
Cons
  • Sometimes it becomes difficult to monitor our Kafka deployments. We've been able to overcome it largely using AWS MSK, a managed service for Apache Kafka, but a separate monitoring dashboard would have been great.
  • Simplify the process for local deployment of Kafka and provide a user interface to get visibility into the different topics and the messages being processed.
  • Learning curve around creation of broker and topics could be simplified
Kafka is well suited in scenarios where a message need to be sent to another system in fault tolerant manner. It is useful when the message size could be large and large number of messages could be floating around.
It would be less appropriate or rather an overkill to use Kafka in scenarios where we are sending short messages to offload certain tasks(like invoice generation and sending email) to a worker(like celery). For such use cases, simple queueing solutions like Amazon SQS should suffice.

Apache Kafka - Default Choice For Large Scale Messaging

Rating: 8 out of 10
August 23, 2023
VT
Vetted Review
Verified User
Apache Kafka
5 years of experience
Apache Kafka is really the bedrock of all things streaming and data processing. I cannot imagine if there is any other product that does it better. My last 2 companies used it, and my current one does so as well. If you want your data stream to be organized and sent, Apache Kafka has become the tool of choice. I have dabbled in Azure EventHubs as well, if you are into opensource data streaming, Apache Kafka will take you where you need to be for data lakes and the amount of data that is streamed for the cybersecurity industry that my company is in. Without Apache Kafka, there is no way that my company products can handle the volume of data that we process for our customers.
  • Data streaming is really second to none.
  • Scaling, done right, Apache Kafka is a workhorse.
  • Ease of administration - Although you cannot really compare to Azure EventHubs, but that is comparing between Apples and Oranges.
Cons
  • The web UI has not really changed in years. UX has been refreshed, but a more streamlined UX instead of many 3rd party webUX tools, will be most welcome.
  • Webhooks can still be tricky to troubleshoot at times.
  • CLI monitoring is a learning curve to get it right.
Apache Kafka is well-suited for most data-streaming use cases. Amazon Kinesis and Azure EventHubs, unless you have a specific use case where using those cloud PaAS for your data lakes, once set up well, Apache Kafka will take care of everything else in the background. Azure EventHubs, is good for cross-cloud use cases, and Amazon Kinesis - I have no real-world experience. But I believe it is the same.
Return to navigation