Hadoop Reviews

245 Ratings
<a href='https://www.trustradius.com/static/about-trustradius-scoring' target='_blank' rel='nofollow noopener noreferrer'>trScore algorithm: Learn more.</a>
Score 8.4 out of 100

Do you work for this company? Learn how we help vendors

Overall Rating

Reviewer's Company Size

Last Updated

By Topic




Job Type


Reviews (1-25 of 35)

Companies can't remove reviews or game the system. Here's why.
January 16, 2021
Joe Hughes | TrustRadius Reviewer
Score 7 out of 10
Vetted Review
Verified User
Review Source
[Apache Hadoop] is being handled as it is (mostly) intended. For large, unstructured data management from our data flows to include logging and reports extract, transform and load. We are using it at a medium scale in an on-prem server delivery with Cloudera as the management platform. While I firmly believe cloudera makes it a bit easier to manage, it obfuscates issues at times.
  • Handles large amounts of unstructured data well, for business level purposes
  • Is a good catchall because of this design, i.e. what does not fit into our vertical tables fits here.
  • Decent for large ETL pipelines and logging free-for-alls because of this, also.
  • Many, many modules and because of Apache open source, takes time to learn
  • Integration is not always seamless between the disparate pieces nor are all the pieces required.
  • Optimization can be challenging (see PSTL design)
Apache Hadoop (and its subsequent add-ons) are well-suited to larger, unstructured data flows, such as aggregation of web traffic or advertising. Geospatial algorithms and their outputs are well-suited for this kind of aggregation as structuring that data is challenging, but leaving it unstructured and performing queries as-needed is a better fit for most business models. With the advent of data science, I would expect Hadoop fits a LOT of their initial outputs quite well.
Read Joe Hughes's full review
September 21, 2020
Blake Baron | TrustRadius Reviewer
Score 7 out of 10
Vetted Review
Verified User
Review Source
It's used organization-wide for older data that's not used as frequently. We use Teradata to warehouse our more recent data, but for data we don't access as often, it's migrated to Hadoop. It addresses the problem of securely storing data without paying the fortune that most warehouses charge for premium cloud storage.
  • Accessible
  • Inexpensive
  • User friendly
  • Much slower than more premium platforms
  • Doesn't connect with other data warehouses
  • Not mainstream -- somewhat more, "hacky" of a solution
Need cheap enterprise-level storage for data that is necessary to keep but isn't regularly accessed? Hadoop is the option for you. If you regularly have analysts or apps accessing the data warehouse, look for something more premium such as Teradata. The good news is that general SQL knowledge transfers well to this warehouse.
It's a great value for what you pay, and most Data Base Administrators (DBAs) can walk in and use it without substantial training. I tend to dabble on the analyst side, so querying the data I need feels like it can take forever, especially on higher traffic days like Monday.
Read Blake Baron's full review
September 19, 2020
Gene Baker | TrustRadius Reviewer
Score 10 out of 10
Vetted Review
Verified User
Review Source
We are using it within my department to process large sets of data that can't be processed in a timely fashion on a single computer or node. The various modules provided with Hadoop make it easy for us to implement map-reduce and perform parallel processing on large sets of data. We have approximately 40TB of data that we run various algorithms against as we try to use the data to solve business problems and prevent fraudulent transactions.
  • Map-reduce
  • Parallel processing
  • Handles node failures
  • HDFS: distributed file system
  • More connectors
  • Query optimization
  • Job scheduling
Hadoop is easy to use. It is a scalable and cost-effective solution for working with large data sets. Hadoop accepts data from a variety of disparate data sources, such as social media feeds, structured or unstructured data, XML, text files, images, etc. Hadoop is also highly available and fault-tolerant, supporting multiple standby NameNodes. The performance of Hadoop is also good because it stores data in a distributed fashion allowing for distributed processing and lower run times. And Hadoop is open-source, making the source code available for modification if necessary. Hadoop also supports multiple languages like C/C++, Python, and Groovy.
We went with a third party for support, i.e., consultant. Had we gone with Azure or Cloudera, we would have obtained support directly from the vendor. my rating is more on the third party we selected and doesn't reflect the overall support available for Hadoop. I think we could have done better in our selection process, however, we were trying to use an already approved vendor within our organization. There is plenty of self-help available for Hadoop online.
Read Gene Baker's full review
December 07, 2019
Mark McCully | TrustRadius Reviewer
Score 9 out of 10
Vetted Review
Verified User
Review Source
We leverage Hadoop for several of our Tier 1 applications. We use Hadoop for our enterprise data lake where all of the data that our company takes in from our members is stored and then a lot of our applications use that as their master datasource. We also leverage Hadoop clusters for Paxata and Data Scientist analytics workloads. Basically, anything that requires a scale-out approach, we put on Hadoop.
  • Scale.
  • Stability.
  • Reliability.
  • There are a lot of Hadoop-specific services and applications under the hood that you have to learn how to administer across the Hadoop cluster.
  • Enterprise-class support doesn't live up to other third-party vendors.
Hadoop is well-suited to enterprise-class data lakes, or large data repositories that require high-availability and super-fast access. Hadoop lends itself to administrators that are well versed in Linux as well. Hadoop is not well suited to situations that don't care about high-availability or don't have any Linux or Hadoop admin available either.
Hadoop support is just average based on our experience. This is one area where it would be nice to see some improvement. Granted, we haven't had many issues with Hadoop that have required support.
Read Mark McCully's full review
June 07, 2019
Hung Vu | TrustRadius Reviewer
Score 9 out of 10
Vetted Review
Verified User
Review Source
We use Hadoop as the main framework to store and process our data, which including very large log files from multiple applications, user behavior data and movie metadata. We deploy our Hadoop cluster in AWS and Hadoop allows us to effective store this data in multiple machines with a consistent pattern and we use Hadoop to process business function such as analytics user behavior, checking application performance and stability, and user taste base on the specified movie type and user age, and time.
  • Allow storing of very big data files in multiple machines with high availability.
  • Effective process large data files with high speed and correct result.
  • Easy to install and configure a Hadoop cluster.
  • Map Reduce framework is simple to understand.
  • It is not suitable for real-time processing.
  • Data store in Hadoop should be in the same pattern in order to process by Map Reduce.
  • Community and support are quite limited.
Hadoop is best suitable for analytics and summary scenarios when input data is very big but in the same pattern such as analytics of a very big log file or parallel processing very big files to retrieve information. We would not use Hadoop for real-time processing or when input data is small, or in the case that we need complex data relationships.
Read Hung Vu's full review
June 05, 2019
Anonymous | TrustRadius Reviewer
Score 8 out of 10
Vetted Review
Verified User
Review Source
It is being used at our Fortune 500 clients. It is great for storage, but it is not well understood by the business. The challenge is that it requires very sophisticated data scientists to use properly and in parallel, but the data scientists turn the data on its head, causing IT execution issues. This has forced IT to restructure data in a denormalized form so the business users can actually be productive. This is a big trend in organizations.
  • Great for inexpensive storage, when originally introduced.
  • Distributed processing
  • Industry standard
  • Network fabric needs to be more sophisticated.
  • Need centralized storage.
  • The three copy of data should have been in the original design, not years later.
  • Consider deploying Spectrum Scale in these environments.
Massive processing in a distributed environment with data that can be distributed. Research environments. Lab environments would also be a good use for Hadoop. Hadoop can also be used in support of Spark environments and used by Frameworks if deployed properly. The best scenario is with a Data Scientist that understands how to program appropriately.
Read this authenticated review
December 22, 2018
Kunal Sonalkar | TrustRadius Reviewer
Score 8 out of 10
Vetted Review
Verified User
Review Source
Hadoop is being used to solve big data modeling problems in our firm. The corporate analytics team uses Hadoop to perform functions like data manipulation, information retrieval, data mapping, and statistical modeling. The business problem which it solves is the limitation of CSV/Excel files to handle more than a million rows. Hadoop allows you to process big data and also has connectivity with platforms like R Studio where you can deploy mathematical models.
  • Capability to collaborate with R Studio. Most of the statistical algorithms can be deployed.
  • Handling Big Data issues like storage, information retrieval, data manipulation, etc.
  • Redundant tasks like data wrangling, data processing, and cleaning are more efficient in Hadoop as the processing times are faster.
  • Hadoop requires intensive computational platforms like a minimum of 8GB memory and i5 processor. Sometimes the hardware does become a hindrance.
  • If we can connect Hadoop to Salesforce, it would be a tremendous functionality as most CRM data comes from that channel.
  • It will be good to have some Geo Coding features if someone wants to opt for spatial data analysis using latitudes and longitudes.
Hadoop is very well suited for big data modeling problems in various industries like finance, insurance, healthcare, automobiles, CRM, etc. In every industry where you need data analysis in real time, Hadoop is a perfect fit in terms of storage, analysis, retrieval, and processing. It won't be a very good tool to perform ETL (Extract Transform Load) techniques though.
Read Kunal Sonalkar's full review
March 28, 2018
Bharadwaj (Brad) Chivukula | TrustRadius Reviewer
Score 10 out of 10
Vetted Review
Verified User
Review Source
  • Used for Massive data collection, storage, and analytics
  • Used for MapReduce processes, Hive tables, Spark job input, and for backing up data
  • Storing Retail Catalog & Session data to enable omnichannel experience for customers, and a 360-degree customer insight
  • Having a consistent data store that can be integrated across other platforms, and have one single source of truth.
  • HDFS is reliable and solid, and in my experience with it, there are very few problems using it
  • Enterprise support from different vendors makes it easier to 'sell' inside an enterprise
  • It provides High Scalability and Redundancy
  • Horizontal scaling and distributed architecture
  • Less organizational support system. Bugs need to be fixed and outside help take a long time to push updates
  • Not for small data sets
  • Data security needs to be ramped up
  • Failure in NameNode has no replication which takes a lot of time to recover
  • Less appropriate for small data sets
  • Works well for scenarios with bulk amount of data. They can surely go for Hadoop file system, having offline applications
  • It's not an instant querying software like SQL; so if your application can wait on the crunching of data, then use it
  • Not for real-time applications
Read Bharadwaj (Brad) Chivukula's full review
May 16, 2018
Kartik Chavan | TrustRadius Reviewer
Score 7 out of 10
Vetted Review
Verified User
Review Source
It is massively being used in our organization for data storage, data backup, and machine learning analytics. Managing vast amounts of data has become quite easy since the arrival of the Hadoop environment. Our department is on verge of moving towards Spark instead of MapReduce, but for now, Hadoop is being used extensively for MapReduce purposes.
  • Hadoop Distributed Systems is reliable.
  • High scalability
  • Open Sources, Low Cost, Large Communities
  • Compatibility with Windows Systems
  • Security needs more focus
  • Hadoop lack in real time processing
Hadoop helps us tackle our problem of maintaining and processing a huge amount of data efficiently. High availability, scalability and cost efficiency are the main considerations for implementing Hadoop as one of the core solutions in our big-data infrastructure. Where relational databases fall short with regard to tuning and performance, Hadoop rises to the occasion and allows for massive customization leveraging the different tools and modules. We use Hadoop to input raw data and add layers of consolidation or analysis to make business decisions about disparate data points.

Read Kartik Chavan's full review
December 13, 2017
Johanes Siregar | TrustRadius Reviewer
Score 8 out of 10
Vetted Review
Verified User
Review Source
Currently, there are two directorates using Hadoop for processing a vast amount of data from various data sources in my organization. Hadoop helps us tackle our problem of maintaining and processing a huge amount of data efficiently. High availability, scalability and cost efficiency are the main considerations for implementing Hadoop as one of the core solutions in our big-data infrastructure.
  • Scalability is one of the main reasons we decided to use Hadoop. Storage and processing power can be seamlessly increased by simply adding more nodes.
  • Replication on Hadoop's distributed file system (HDFS) ensures robustness of data being stored which ensures high-availability of data.
  • Using commodity hardware as a node in a Hadoop cluster can reduce cost and eliminates dependency on particular proprietary technology.
  • User and access management are still challenging to implement in Hadoop, deploying a kerberized secured cluster is quite a challenge itself.
  • Multiple application versioning on a single cluster would be a nice to have feature.
  • Processing a large number of small files also becomes a problem on a very large cluster with hundreds of nodes.
Hadoop is well suited for internal projects in a secure environment without any external exposure. It also excels well in storing and processing large amounts of data. It is also suitable to be implemented as a data repository for data-intensive applications which require high data availability, a significant amount of memory and huge processing power. However, it is not appropriate to implement as a near real-time solution which needs a high response time with a high number of high transactions per seconds.
Read Johanes Siregar's full review
August 24, 2017
Vinay Suneja | TrustRadius Reviewer
Score 10 out of 10
Vetted Review
Verified User
Review Source
[It was used] As a proof of concept to analyze a huge amount of data. We were building a product to analyze huge data and eventually sell that product to a utility.
  • Highly Scalable Architecture
  • Low cost
  • Can be used in a Cloud Environment
  • Can be run on commodity Hardware
  • Open Source
  • Its open source but there are companies like hortonworks, Cloudera etc., which give enterprise support
  • Lots of scripting still needed
  • Some tools in the hadoop eco system overlap
  • To analyze a huge quantity of data at a low cost. It is definitely the future.
  • Machine learning with Spark is also a good use case.
  • You can also use AWS - EMR with S3 to store a lot of data with low cost.
Read Vinay Suneja's full review
September 22, 2017
Gyan Dwibedy | TrustRadius Reviewer
Score 9 out of 10
Vetted Review
Verified User
Review Source
Hadoop is used to build a data lake where all enterprise data for my entire company can be stored. With data centralization and standardization we use it to build analytical solutions for our company. There are many other uses for the data - for example monitoring performance via KPIs, etc.
  • Massive data processing
  • Fault tolerance
  • Speed to market
  • Data visualization
  • Data history
  • Random access
Best - Analytics

Worst: transaction processing
Read Gyan Dwibedy's full review
June 03, 2016
Mark Gargiulo | TrustRadius Reviewer
Score 8 out of 10
Vetted Review
Verified User
Review Source
We needed a robust/redundant system to run multiple simultaneous jobs for our ETL pipeline, this needed distributed storage space, integration with Windows AD user accounts and the ability to expand when needed with little to no downtime.
We are using Cloudera 5.6 to orchestrate the install (along with puppet) and manage the hadoop cluster.
  • The distributed replicated HDFS filesystem allows for fault tolerance and the ability to use low cost JBOD arrays for data storage.
  • Yarn with MapReduce2 gives us a job slot scheduler to fully utilize available compute resources while providing HA and resource management.
  • The hadoop ecosystem allows for the use of many different technologies all using the same compute resources so that your spark, samza, camus, pig and oozie jobs can happily co-exist on the same infrastructure.
  • Without Cloudera as a management interface the hadoop components are much harder to manage to ensure consistency across a cluster.
  • The calculations of hardware resources to job slots/resource management can be quite an exercise in finding that "sweet spot" with your applications, a more transparent way of figuring this out would be welcome.
  • A lot of the roles and management pieces are written in java, which from an administration perspective can have there own issues with garbage collection and memory management.
Hadoop is not for the faint of heart and is not a technology per se but an ecosystem of disparate technologies sitting on top of HDFS. It is certainly powerful but if, like me, you were handed this with no prior knowledge or experience using or administering this ecosystem the learning curve can be significant and ongoing having said that I don't think currently there are many other opensource technologies that can provide the flexibility in the "big data" arena especially for ETL or machine learning.
Read Mark Gargiulo's full review
May 26, 2016
Muhammad Fazalul Rahman | TrustRadius Reviewer
Score 7 out of 10
Vetted Review
Verified User
Review Source
Hadoop is not used as a norm in my organization. I just use it personally to complete my job faster. It is implemented in the research computing cluster to be used by faculty and students. It completes jobs faster by parallelizing the tasks using MapReduce framework. This gives me considerable speed in the tasks I perform.
  • Provides a reliable distributed storage to store and retrieve data. I am able to store data without having to worry that a node failing might cause the loss of data.
  • Parallelizes the task with MapReduce and helps complete the task faster. The ease of use of MapReduce makes it possible to write code in a simple way to make it run on different slaves in the cluster.
  • With the massive user base, it is not hard to find documentation or help relating to any problem in the area. Therefore, I rarely had any instances where I had to look for a solution for a really long time.
  • I would have hoped for a simpler interface if possible, so that the initial effort that had to be spent would have been much less. I often see others who are starting to use hadoop are finding it hard to learn.
  • I'm not sure if it is a problem with the organization and the modules they provide, but sometimes I wish there were more modules available to be used.
If the user is trying to complete a task quickly and efficiently, then Hadoop is the best option for them. However, it may happen that the deadline for the submission is close and the user has little or no knowledge of Hadoop. In this case, it is easier not to use hadoop since it takes time to learn.
Read Muhammad Fazalul Rahman's full review
May 25, 2016
Tom Thomas | TrustRadius Reviewer
Score 10 out of 10
Vetted Review
Verified User
Review Source
The company I worked at used Hadoop clusters for processing huge datasets. They had several nodes for both production and per-production nodes. It allowed distributed processing of data across several clusters with an easy to use software model. It is used by the Systems and IT department at my company.
  • HDFS provides a very robust and fast data storage system.
  • Hadoop works well with generic "commodity" hardware negating the need for expensive enterprise grade hardware.
  • It is mostly unaffected by system and hardware failures of nodes and is self-sustained.
  • While its open source nature provides a lot of benefits, there are multiple stability issues that arise due to it.
  • Limited support for interactive analytics.
Hadoop is a very powerful tool that can be used in almost any environment where huge scale processing of data across clusters is required. It provides multiple modules such as HDFS and MapReduce that will make managing and analyzing said data reliable and efficient. Hadoop is a new and constantly evolving tool, and hence it needs users to be on top of it all the time.
Read Tom Thomas's full review
December 01, 2015
Mrugen Deshmukh | TrustRadius Reviewer
Score 8 out of 10
Vetted Review
Verified User
Review Source
I have used Hadoop for building business feeds for a telecom client. The major purpose for using Hadoop was to tackle the problem of gaining insights into the ever growing number of business data. We leveraged the map reduce programming model to churn more than 30 gigabytes of data per day into actionable and aggregated data which was further leveraged by campaign teams to design and shape marketing and by product teams to envision new customer experiences.
  • Hadoop is an excellent framework for building distributed, fault tolerant data processing systems which leverage HDFS which is optimized for low latency storage and high throughput performance.
  • Hadoop Map reduce is a powerful programming model and can be leveraged directly either via use of Java programming language or by data flow languages like Apache Pig.
  • Hadoop has a reach eco system of companion tools which enable easy integration for ingesting large amounts of data efficiently from various sources. For example Apache Flume can act as data bus which can use HDFS as a sink and integrates effectively with disparate data sources.
  • Hadoop can also be leveraged to build complex data processing and machine learning workflows, due to availability of Apache Mahout, which uses the map reduce model of Hadoop to run complex algorithms.
  • Hadoop is a batch oriented processing framework, it lacks real time or stream processing.
  • Hadoop's HDFS file system is not a POSIX compliant file system and does not work well with small files, especially smaller than the default block size.
  • Hadoop cannot be used for running interactive jobs or analytics.
1. How large are your data sets? If your answer is few gigabytes, Hadoop may be overkill for your needs.
2. Do you require real-time analytical processing? If yes, Hadoop's map reduce may not be a great asset in that scenario.
3. Do you want to want to process data in a batch processing fashion and scale for TeraBytes size clusters? Hadoop is definitely a great fit for your use case.
Read Mrugen Deshmukh's full review
February 16, 2016
Piyush Routray | TrustRadius Reviewer
Score 9 out of 10
Vetted Review
Verified User
Review Source
My present company uses Hadoop and associated technology to create a data pipeline using open source tools. Apart from that we also consult for projects which could potentially use Hadoop. Apart from that, I also work as a consultant for HDP. We actively help in installation and setup of hadoop clusters.
  • Hadoop is open source and with a wide community already present, the usage is much easy for individuals, startups and MNCs alike.
  • Hadoop works well for commodity hardware and that makes it easier to avoid pricey clusters.
  • Hadoop takes parallel programming to next level and helps processing of multi terabytes (even petabytes) of data easier.
  • While Hadoop MR parallelizes jobs involving Big Data, it is slow for smaller data sets
  • OLAP (analytics)is easier, however, OLTP (transactions) is a problem in most cases.
  • People using Hadoop have to keep in mind that small proof of concepts may not scale as expected.
Hadoop is well suited only if you have large datasets to work upon. Jumping to Hadoop with small data sets won't be as useful.
Read Piyush Routray's full review
February 13, 2016
Tushar Kulkarni | TrustRadius Reviewer
Score 10 out of 10
Vetted Review
Verified User
Review Source
I have been working with Hadoop since last year. It is very user friendly. Hadoop was used by the data center management team. It allows distributed processing of huge amount of data sets across clusters of computers using simple programming models.
  • It is robust in the sense that any big data applications will continue to run even when individual servers fail.
  • Enormous data can be easily sorted.
  • It can be improved in terms of security.
  • Since it is open source, stability issues must be improved.
Hadoop is really very useful when dealing with big data.
Read Tushar Kulkarni's full review
December 04, 2015
Pierre LaFromboise | TrustRadius Reviewer
Score 10 out of 10
Vetted Review
Verified User
Review Source
We utilize Hadoop primarily as a large data staging area for disparate corporate data. Select data is aggregated and moved downstream to a more formal data warehouse. Some data analytics is also performed directly against the Hadoop stored data. The direct analytics is done primarily with Apache Spark utilizing Scala and Python.
  • No requirement for schema on write.
  • Ability to scale to massive amounts of data.
  • Open platform provides multiple options and customizations to fit your exact needs.
  • The platform is still maturing and can be confusing to research and use. Basic tasks can still be manual and are not always user friendly.
A big data problem doesn't always mean huge volumes of data. The other V's of big data (velocity and variety) are also important factors that may lead to selecting Hadoop as a platform.
Read Pierre LaFromboise's full review
December 01, 2015
Sudhakar Kamanboina | TrustRadius Reviewer
Score 10 out of 10
Vetted Review
Verified User
Review Source
Hadoop is used by data center management team. Hadoop processes the metric data pushed by virtual machines. Hadoop's output is served to the analytics engine and respective actions are taken to maintain even load on machines.
  • Processing huge data sets.
  • Concurrent processing.
  • Performance increases with distribution of data across multiple machines.
  • Better handling of unstructured data.
  • Data nodes and processing nodes
  • Make Haadop lighweight.
  • Installation is very difficult. Make it more user friendly.
  • Introduce a feature that works with continuous integration.
Ask about how Hadoop fits in your environment and how fast it processes streaming data.
Read Sudhakar Kamanboina's full review
December 01, 2015
Gaurav Kasliwal | TrustRadius Reviewer
Score 10 out of 10
Vetted Review
Verified User
Review Source
I have been using Hadoop for 2 years and I really find it very useful, especially working with bigger datasets. I have used Hadoop and Mahout for my project to analyze and learn different patterns from Yelp Dataset. It was really very easy and user friendly to use.

  • Scalability. Hadoop is really useful when you are dealing with a bigger system and you want to make your system scalable.
  • Reliable. Very reliable.
  • Fast, Fast Fast!!! Hadoop really works very fast, even with bigger datasets.
  • Development tools are not that easy to use.
  • Learning curve can be reduced. As of now, some skill is a must to use Hadoop.
  • Security. In today's world, security is of prime importance. Hadoop could be made more secure to use.
Hadoop is really useful for larger datasets. It is not very useful when you are dealing with a smaller dataset.
Read Gaurav Kasliwal's full review
November 17, 2015
Sumant Murke | TrustRadius Reviewer
Score 9 out of 10
Vetted Review
Verified User
Review Source
I have being using Hadoop for the last 12 months and really find it effective while dealing with large amounts of data. I have used Hadoop jointly with Apache Mahout for building a recommendation system and got amazing results. It was fast, reliable and easy to manage.
  • Fast. Prior to working with Hadoop I had many performance based issues where our system was very slow and took time. But after using Hadoop the performance was significantly increased.
  • Fault tolerant. The HDFS (Hadoop distributed file system) is good platform for working with large data sets and makes the system fault tolerant.
  • Scalable. As Hadoop can deal with structured and unstructured data it makes the system scalable.
  • Security. As it has to deal with a large data set it can be vulnerable to malicious data.
  • Less performance with smaller data. Doesn't provide effective results if the data is very small.
  • Requires a skilled person to handle the system.
I would recommend Hadoop when a system is dealing with huge amount of data.
Read Sumant Murke's full review
November 11, 2015
Ajay Jha | TrustRadius Reviewer
Score 10 out of 10
Vetted Review
Verified User
Review Source
We are using it for Retail data ETL processing. This is going to be used in whole organization. It allows terabytes of data to be processed in faster manner with scalability.
  • Processes big volume of data using parallelism in faster manner.
  • No schema required. Hadoop can process any type of data.
  • Hadoop is horizontally scalable.
  • Hadoop is free.
  • Development tools are not that friendly.
  • Hard to find hadoop resources.
Hadoop is not a replacement of a transactional system such as RDBMS. It is suitable for batch processing.
Read Ajay Jha's full review
April 29, 2015
Bhushan Lakhe | TrustRadius Reviewer
Score 7 out of 10
Vetted Review
Verified User
Review Source
Hadoop is used for storing and analyzing log data (logs from warehouse loads or other data processing) as well as storing and retrieving financial data from JD Edwards. It's also planned to be used for archival. Hadoop is used by several departments within our organization. Currently, we are paying a lot of money for hosting historical data and we plan to move that to Hadoop; reducing our storage costs. Also, we got a much better performance out of our Hadoop cluster for processing a large amount of financial data. So, in that senese, Hadoop addressed multiple business problems for us.
  • Hadoop stores and processes unstructured data such as web access logs or logs of data processing very well
  • Hadoop can be effectively used for archiving; providing a very economic, fast, flexible, scalable and reliable way to store data
  • Hadoop can be used to store and process a very large amount of data very fast
  • Security is a piece that's missing from Hadoop - you have to supplement security using Kerberos etc.
  • Hadoop is not easy to learn - there are various modules with little or no documentation
  • Hadoop being open-source, testing, quality control and version control are very difficult
Hadoop is best suited for warehouse or OLAP processing. It's not suitable for OLTP or small transaction processing
Read Bhushan Lakhe's full review
August 19, 2015
Michael Reynolds | TrustRadius Reviewer
Score 10 out of 10
Vetted Review
Verified User
Review Source
Hadoop is slowly taking the place of the company-wide MySQL data warehouse. Sqoop is being used to import the data from MySQL. Impala is gradually being used as the new data source for all queries. Eventually, MySQL will be phased out, and all data will go directly into Hadoop. Tests have shown that the queries run from Impala are much faster than those from MySQL
  • The built-in data block redundancy helps ensure that the data is safe. Hadoop also distributes the storage, processing, and memory, to work with large amounts of data in a shorter period of time, compared to a typical database system.
  • There are numerous ways to get at the data. The basic way is via the Java-based API, by submitting MapReduce jobs in Java. Hive works well for quick queries, using SQL, which are automatically submitted as MapReduce Jobs.
  • The web-based interface is great for monitoring and administering the cluster, because it can potentially be done from anywhere.
  • Impala is a very fast alternative to Hive. Unlike Hive, which submits queries as MapReduce jobs, Impala provides immediate access to the data.
  • If you are not familiar with Java and the operating system Hadoop rides on, such as Linux, and have trouble with submitted MapReduce jobs, the error messages can seem cryptic, and it can be challenging to track down the source of the problem.
Hadoop is designed for huge data sets, which can save a lot of time with reading and processing data. However, the NameNode, which allocates the data blocks, is a single point of failure. Without a proper backup, or another NameNode ready to kick in, the file system can be become instantly useless. There are typically two ways to ensure the integrity of the NameNode.

One way is to have a Secondary NameNode, which periodically creates a copy of the file system image file. The process is called a "checkpoint". In the event of a failure of the Primary NameNode, the Secondary NameNode can be manually configured as the Primary NameNode. The need for manual intervention can cause delays and potentially other problems.

The second method is with a Standby NameNode. In this scenario, the same checkpoints are performed, however, in the event of a Primary NameNode failure, the Standby NameNode will immediately take the place of the Primary, preventing a disruption in service. This method requires additional services to be installed for it to operate.
Read Michael Reynolds's full review

What is Hadoop?

Hadoop is an open source software from Apache, supporting distributed processing and data storage. Hadoop is popular for its scalability, reliability, and functionality available across commoditized hardware.
Categories:  Hadoop-Related

Hadoop Video

What is Hadoop?

Hadoop Integrations

Sematext Infrastructure Monitoring (formerly Sematext SPM)

Hadoop Pricing

  • Does not have featureFree Trial Available?No
  • Has featureFree or Freemium Version Available?Yes
  • Does not have featurePremium Consulting/Integration Services Available?No
  • Entry-level set up fee?No

Hadoop Technical Details

Operating Systems: Unspecified
Mobile Application:No