Skip to main content
TrustRadius
Databricks Data Intelligence Platform

Databricks Data Intelligence Platform

Overview

What is Databricks Data Intelligence Platform?

Databricks in San Francisco offers the Databricks Lakehouse Platform (formerly the Unified Analytics Platform), a data science platform and Apache Spark cluster manager. The Databricks Unified Data Service aims to provide a reliable and scalable platform for data pipelines, data…

Read more

Learn from top reviewers

Awards

Products that are considered exceptional by their customers based on a variety of criteria win TrustRadius awards. Learn more about the types of TrustRadius awards to make the best purchase decision. More about TrustRadius Awards

Return to navigation

Pricing

View all pricing

Standard

$0.07

Cloud
Per DBU

Premium

$0.10

Cloud
Per DBU

Enterprise

$0.13

Cloud
Per DBU

Entry-level set up fee?

  • No setup fee

Offerings

  • Free Trial
  • Free/Freemium Version
  • Premium Consulting/Integration Services
Return to navigation

Product Details

What is Databricks Data Intelligence Platform?

Databricks Data Intelligence Platform Technical Details

Deployment TypesSoftware as a Service (SaaS), Cloud, or Web-Based
Operating SystemsUnspecified
Mobile ApplicationNo

Frequently Asked Questions

Databricks in San Francisco offers the Databricks Lakehouse Platform (formerly the Unified Analytics Platform), a data science platform and Apache Spark cluster manager. The Databricks Unified Data Service aims to provide a reliable and scalable platform for data pipelines, data lakes, and data platforms. Users can manage full data journey, to ingest, process, store, and expose data throughout an organization. Its Data Science Workspace is a collaborative environment for practitioners to run all analytic processes in one place, and manage ML models across the full lifecycle. The Machine Learning Runtime (MLR) provides data scientists and ML practitioners with scalable clusters that include popular frameworks, built-in AutoML and optimizations.

Reviewers rate Usability highest, with a score of 9.5.

The most common users of Databricks Data Intelligence Platform are from Enterprises (1,001+ employees).
Return to navigation

Comparisons

View all alternatives
Return to navigation

Reviews and Ratings

(82)

Community Insights

TrustRadius Insights are summaries of user sentiment data from TrustRadius reviews and, when necessary, 3rd-party data sources. Have feedback on this content? Let us know!

The Databricks Lakehouse Platform, also known as the Unified Analytics Platform, has been widely used by multiple departments to address a range of data engineering and analytics challenges. Users have leveraged the platform to initiate data warehousing, SQL analytics, real-time monitoring, and data governance. The versatility and openness of the platform have allowed users to save a significant amount of time and effectively manage cloud costs and human resources.

Customers have utilized the Databricks Lakehouse Platform for various use cases, including creating dashboards with tools like Tableau, Redash, and Qlik, as well as integrating with CRM systems like Salesforce and SAP. The platform has also been employed for developing chatbots in Knowledge Management and serving machine learning models behind API endpoints. Furthermore, it is extensively used for data science project development, facilitating tasks such as data analysis, wrangling, feature creation, training, model testing, validation, and deployment.

Databricks' integration capabilities, including Git integration and integration with Azure or AWS, enable users to leverage the power of integrated machine learning features. Additionally, the platform's reliability and excellent technical support make it a preferred choice for building data pipelines and solving big data engineering problems. It is widely used by engineering and IT teams to transform IoT data, build data models for business intelligence tools, and run daily/hourly jobs to create BI models.

Moreover, the Databricks Lakehouse Platform serves as an invaluable learning tool for individuals in the Computer Information System department. The community forum proves particularly helpful for self-learners with questions. Furthermore, the platform supports deep dive analysis on metrics by Data and Product teams, facilitates client reporting and analytics through data mining capabilities, replaces traditional RDBMS like Oracle for Big Batch ETL jobs on big data sets.

In summary, the Databricks Lakehouse Platform is employed across organizations to solve a variety of data engineering and analytics use cases. Its seamless integration with cloud platforms, support for different data formats, and scalability make it suitable for tasks such as data ingestion and cleansing, interactive analysis, and development of analytic services.

User-Friendly SQL: Users have found the SQL in Databricks to be user-friendly, allowing them to easily write and execute queries. Several reviewers have praised the intuitive nature of the SQL interface, making it accessible for users of different skill levels.

Enhanced Collaboration: The enhanced collaboration between data science and data engineering teams is seen as a positive feature by many users. They appreciate how Databricks facilitates seamless communication and knowledge sharing among team members, ultimately leading to improved productivity and efficiency.

Versatile Integration: The integration with multiple Git providers and the merge assistant is highly valued by users. This feature allows for smooth version control and simplifies the collaborative development process. With this capability, developers can easily manage their codebase, track changes, resolve conflicts, and ensure a streamlined workflow.

Confusing Workspace Navigation: Several users have found the navigation to create a workspace in the Databricks Lakehouse Platform confusing and time-consuming, hindering their productivity. They have expressed frustration over the complex steps involved, resulting in wasted time.

Difficulty Locating Tables: Many reviewers have expressed difficulty in locating tables after they were created, often leading to the need for deletion and recreation. This issue has caused frustration and wasted time for users who struggle to find their data within the platform.

Random Task Failures: Some users have experienced random task failures while using the platform, making it challenging for them to debug and profile code effectively. These unexpected failures undermine confidence in the system's stability and result in delays as users attempt to identify and fix these issues.

Users highly recommend the Lakehouse platform for various data-related tasks, such as building cloud-native lakehouse platforms, ingesting and transforming big data batches/streams, and implementing medallion lakehouse architectures. They find the platform simple to use and appreciate its hassle-free administration and maintenance.

The Lakehouse platform is also highly recommended for setting up Hadoop clusters and dealing with big data, analytics, and machine learning workflows. Users believe that it provides a comprehensive and open solution for these tasks.

Users suggest exploring the features of the Lakehouse platform, such as partner connect, advanced analytics/MLOPS/Data science Auto-ML capabilities. They find these features useful and believe that they enhance the platform's salient functionalities.

Overall, users highly recommend the Lakehouse platform for its ease of use, support for major cloud providers (AWS, AZURE, GCP), and useful features like data sharing (Delta Sharing). However, users also recommend considering the level of reliance on proprietary technology versus industry standards like Spark, SQL, and dbt. It is advised to read through the documentation and gather firsthand experiences from individuals who have used the Lakehouse platform.

Reviews

(1-17 of 17)
Companies can't remove reviews or game the system. Here's why

Most collaborative Data Science & AI workspace !

Rating: 10 out of 10
July 26, 2023
AR
Vetted Review
Verified User
Databricks Data Intelligence Platform
4 years of experience
  • Enhanced Data Science & Data Engineering collaboration
  • Complete Infrastructure-as-code Terraform provider
  • Very easy streaming capabilities
  • Multiple Git providers integration with merge assistant

Databricks Lakehouse Platform for all your analytics requirements

Rating: 8 out of 10
May 15, 2022
Verified User
Vetted Review
Verified User
Databricks Data Intelligence Platform
2 years of experience
  • Very well optimized Spark Jobs Execution Engine.
  • Time travel in Databricks Lakehouse Platform allows you to version your datasets.
  • Newly integrated Analytics feature allows you to build visualization dashboards.
  • Native integration with managed MLflow service.

Best in the industry

Rating: 9 out of 10
February 08, 2022
JB
Vetted Review
Verified User
Databricks Data Intelligence Platform
5 years of experience
  • Data Science code agnostic (SQL, R, Pyton, Pyspark, Scala)
  • Customer Service with REAL support from data eng. and data scientist
  • Integration with many technology : Tableau, Azure, AWS, Spark, etc.

The wonders of all your data analysis in one place

Rating: 8 out of 10
November 09, 2021
Verified User
Vetted Review
Verified User
Databricks Data Intelligence Platform
1 year of experience
  • Cross company shared workspaces for unified comprehension of the data
  • Combining different languages such as SQL and Python in one single space in order to make data analysis
  • Quick execution of highly complex queries

Positive review for Databricks Lakehouse Platform

Rating: 9 out of 10
August 13, 2021
Verified User
Vetted Review
Verified User
Databricks Data Intelligence Platform
2 years of experience
  • Scheduling jobs to automate queries
  • User friendly - a new user can easily navigate through SQL/Python queries
  • Options to code in multiple languages (SQL, Python, Scala, R) and easy to switch with the use of the % operator

Databricks Lakehouse is modern solutions for current big data problems

Rating: 9 out of 10
July 07, 2021
  • Seamless integration with Azure cloud platform services like Azure Data Lake Storage, Blobstorage , Azure Data Factory, Azure DevOps.
  • Databricks lakehouse platform in backed uses Apache Spark for all the computation to be faster and distributed. It helps to complete data pipelines to process huge amounts [of] big data in lesser time with low cost.
  • Databricks Lakehouse solves the problems data lake, by introducing Delta Lake concept. It provides support for updates, deletes, schema evaluation.

Great for both ad-hoc analyzes and scheduled jobs

Rating: 8 out of 10
May 15, 2021
EO
Vetted Review
Verified User
Databricks Data Intelligence Platform
3 years of experience
  • Ready-2-use Spark environment with zero configuration required
  • Interactive analysis with notebook-style coding
  • Variety of language options (R, Scala, Python, SQL, Java)
  • Scheduled jobs

Databricks for modern day ETL

Rating: 9 out of 10
January 31, 2019
Verified User
Vetted Review
Verified User
Databricks Data Intelligence Platform
2 years of experience
  • Process raw data in One Lake (S3) env to relational tables and views
  • Share notebooks with our business analysts so that they can use the queries and generate value out of the data
  • Try out PySpark and Spark SQL queries on raw data before using them in our Spark jobs
  • Modern day ETL operations made easy using Databricks. Provide access mechanism for different set of customers

Databricks Review

Rating: 9 out of 10
August 22, 2018
Verified User
Vetted Review
Verified User
Databricks Data Intelligence Platform
2 years of experience
  • Extremely Flexible in Data Scenarios
  • Fantastic Performance
  • DB is always updating the system so we can have latest features.

If you want to be an effective ML learner, use Databricks

Rating: 7 out of 10
March 28, 2018
AL
Vetted Review
Verified User
Databricks Data Intelligence Platform
1 year of experience
  • There is databricks community, which is a free version. It is available for beginners to have an easy start with a big data platform. It does not have every feature of the full version but is still adequate for extremely new coders.
  • There are many resourceful training elements that are available to developers, data scientists, data engineers and other IT professionals to learn Apache Spark.

Databricks Review

Rating: 6 out of 10
September 15, 2017
Verified User
Vetted Review
Verified User
Databricks Data Intelligence Platform
1 year of experience
  • Very simplified infrastructure initialization
  • Seamless and automated optimization of job execution
  • Simple tool to get used to
Return to navigation