Google BigQuery is a serverless, multicloud data warehouse that simplifies the process of working with all types of data. At the core of Google’s data cloud, BigQuery can be used to simplify data integration and securely scale analytics, share rich data experiences with built-in business intelligence, and train and deploy ML models with a simple SQL interface, helping to make an organization’s operations more data-driven.
BigQuery is a fully managed, AI-ready data analytics platform that helps you maximize value from your data and is designed to be multi-engine, multi-format, and multi-cloud.
Store 10 GiB of data and run up to 1 TiB of queries for free per month.
Gemini in BigQuery for an AI-powered assistive experience
BigQuery provides a single, unified workspace that includes a SQL, a notebook and a NL-based canvas interface for data practitioners of various coding skills to simplify analytics workflows from data ingestion and preparation to data exploration and visualization to ML model creation and use. Gemini in BigQuery provides AI-powered assistive and collaboration features including code assist, visual data preparation, and intelligent recommendations that help enhance productivity and optimize costs.
Bring multiple engines to a single copy of data
Serverless Apache Spark is available directly in BigQuery. BigQuery Studio lets users write and execute Spark without exporting data or managing infrastructure. BigQuery metastore provides shared runtime metadata for SQL and open source engines for a unified set of security and governance controls across all engines and storage types. By bringing multiple engines, including SQL, Spark and Python, to a single copy of data and metadata, the solution breaks down data silos.
Built-in machine learning
BigQuery ML provides built-in capabilities to create and run ML models for BigQuery data. It offers a broad range of models for predictions, and access to the latest Gemini models to derive insights from all data types and unlock generative AI tasks such as text summarization, text generation, multimodal embeddings, and vector search. It increases the model development speed by directly applying ML to data and eliminating the need to move data from BigQuery.
Built-in data governance
Data governance is built into BigQuery, including full integration of Dataplex capabilities such as a unified metadata catalog, data quality, lineage, and profiling. Customers can use rich AI-driven metadata search and discovery capabilities for assets including dataset schemas, notebooks and reports, public and commercial dataset listings, and more. BigQuery users can also use governance rules to manage policies on BigQuery object tables.