Amazon Comprehend is a natural language processing (NLP) service that uses machine learning to find insights and relationships in text. Amazon Comprehend uses machine learning to help uncover insights and relationships in unstructured data. The service identifies the language of the text; extracts key phrases, places, people, brands, or events; understands how positive or negative the text is; analyzes text using tokenization and parts of speech; and automatically organizes a collection of text…
$0
per unit
Elasticsearch
Score 8.7 out of 10
N/A
Elasticsearch is an enterprise search tool from Elastic in Mountain View, California.
Specifically, it starts processing millions of documents in minutes by leveraging the power of machine learning without having trained models from scratch. If any of the content contains personally identifiable information not only can Amazon Comprehend locate it but it will also redact or mask it. Using NLP techniques Amazon Comprehend goes well beyond keyword search or rules-based tagging to accurately classify documents. For my task or development, I cannot find any difficulties with Amazon Comprehend.
Elasticsearch is a really scalable solution that can fit a lot of needs, but the bigger and/or those needs become, the more understanding & infrastructure you will need for your instance to be running correctly. Elasticsearch is not problem-free - you can get yourself in a lot of trouble if you are not following good practices and/or if are not managing the cluster correctly. Licensing is a big decision point here as Elasticsearch is a middleware component - be sure to read the licensing agreement of the version you want to try before you commit to it. Same goes for long-term support - be sure to keep yourself in the know for this aspect you may end up stuck with an unpatched version for years.
Amazon Comprehend identifies the language of the text and extracts Key-phrases, places, people, brands or events.
It can build a custom set of entities or text classification models that are tailored uniquely to the organisation's need
Amazon Comprehend's medical can be used to identify medical conditions, medications, dosages, strength and frequencies from sources like doctor's notes, clinical trial reports and patient health records. This service is very good and with well an accuracy or confidence score.
As I mentioned before, Elasticsearch's flexible data model is unparalleled. You can nest fields as deeply as you want, have as many fields as you want, but whatever you want in those fields (as long as it stays the same type), and all of it will be searchable and you don't need to even declare a schema beforehand!
Elastic, the company behind Elasticsearch, is super strong financially and they have a great team of devs and product managers working on Elasticsearch. When I first started using ES 3 years ago, I was 90% impressed and knew it would be a good fit. 3 years later, I am 200% impressed and blown away by how far it has come and gotten even better. If there are features that are missing or you don't think it's fast enough right now, I bet it'll be suitable next year because the team behind it is so dang fast!
Elasticsearch is really, really stable. It takes a lot to bring down a cluster. It's self-balancing algorithms, leader-election system, self-healing properties are state of the art. We've never seen network failures or hard-drive corruption or CPU bugs bring down an ES cluster.
To get started with Elasticsearch, you don't have to get very involved in configuring what really is an incredibly complex system under the hood. You simply install the package, run the service, and you're immediately able to begin using it. You don't need to learn any sort of query language to add data to Elasticsearch or perform some basic searching. If you're used to any sort of RESTful API, getting started with Elasticsearch is a breeze. If you've never interacted with a RESTful API directly, the journey may be a little more bumpy. Overall, though, it's incredibly simple to use for what it's doing under the covers.
We've only used it as an opensource tooling. We did not purchase any additional support to roll out the elasticsearch software. When rolling out the application on our platform we've used the documentation which was available online. During our test phases we did not experience any bugs or issues so we did not rely on support at all.
For natural language processing tasks or techniques, there are many service providers out there in the market such as Azure Cloud Services, IBM Watson and Google Cloud Platform (GCP), but compared with them, Amazon Comprehend is the best service provider in contents of accuracy, speed of processing multilingual text, supporting SDK for most of the languages and well documented.
As far as we are concerned, Elasticsearch is the gold standard and we have barely evaluated any alternatives. You could consider it an alternative to a relational or NoSQL database, so in cases where those suffice, you don't need Elasticsearch. But if you want powerful text-based search capabilities across large data sets, Elasticsearch is the way to go.
It supports better and accurately as compared with our existing or old implementations. So, we fulfil our needs as per clients' requirements and it will help to grow or improve client satisfaction.
For these specific requirements, we do not require any machine learning engineers or related professionals to hire in our organisation.
None of any negative sides can be affected our business or distract existing clients.
We have had great luck with implementing Elasticsearch for our search and analytics use cases.
While the operational burden is not minimal, operating a cluster of servers, using a custom query language, writing Elasticsearch-specific bulk insert code, the performance and the relative operational ease of Elasticsearch are unparalleled.
We've easily saved hundreds of thousands of dollars implementing Elasticsearch vs. RDBMS vs. other no-SQL solutions for our specific set of problems.