Amazon SageMaker vs. Apache Airflow

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Amazon SageMaker
Score 8.5 out of 10
N/A
Amazon SageMaker enables developers and data scientists to quickly and easily build, train, and deploy machine learning models at any scale. Amazon SageMaker removes all the barriers that typically slow down developers who want to use machine learning.N/A
Apache Airflow
Score 8.6 out of 10
N/A
Apache Airflow is an open source tool that can be used to programmatically author, schedule and monitor data pipelines using Python and SQL. Created at Airbnb as an open-source project in 2014, Airflow was brought into the Apache Software Foundation’s Incubator Program 2016 and announced as Top-Level Apache Project in 2019. It is used as a data orchestration solution, with over 140 integrations and community support.N/A
Pricing
Amazon SageMakerApache Airflow
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Amazon SageMakerApache Airflow
Free Trial
NoNo
Free/Freemium Version
NoYes
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Amazon SageMakerApache Airflow
Features
Amazon SageMakerApache Airflow
Workload Automation
Comparison of Workload Automation features of Product A and Product B
Amazon SageMaker
-
Ratings
Apache Airflow
8.7
12 Ratings
3% above category average
Multi-platform scheduling00 Ratings9.312 Ratings
Central monitoring00 Ratings9.012 Ratings
Logging00 Ratings8.612 Ratings
Alerts and notifications00 Ratings9.312 Ratings
Analysis and visualization00 Ratings6.912 Ratings
Application integration00 Ratings9.312 Ratings
Best Alternatives
Amazon SageMakerApache Airflow
Small Businesses
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10

No answers on this topic

Medium-sized Companies
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
ActiveBatch Workload Automation
ActiveBatch Workload Automation
Score 7.6 out of 10
Enterprises
Dataiku
Dataiku
Score 8.2 out of 10
Control-M
Control-M
Score 9.3 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Amazon SageMakerApache Airflow
Likelihood to Recommend
9.0
(5 ratings)
8.8
(12 ratings)
Usability
-
(0 ratings)
8.3
(3 ratings)
User Testimonials
Amazon SageMakerApache Airflow
Likelihood to Recommend
Amazon AWS
It allows for one-click processes and for things to be auto checked before they are moved through the process but through the system. It also makes training easy. I am able to train users on the basic fundamentals of the tool and how it is used very easily as it is fully managed on its own which is incredible.
Read full review
Apache
Airflow is well-suited for data engineering pipelines, creating scheduled workflows, and working with various data sources. You can implement almost any kind of DAG for any use case using the different operators or enforce your operator using the Python operator with ease. The MLOps feature of Airflow can be enhanced to match MLFlow-like features, making Airflow the go-to solution for all workloads, from data science to data engineering.
Read full review
Pros
Amazon AWS
  • Machine Learning at scale by deploying huge amount of training data
  • Accelerated data processing for faster outputs and learnings
  • Kubernetes integration for containerized deployments
  • Creating API endpoints for use by technical users
Read full review
Apache
  • Apache Airflow is one of the best Orchestration platforms and a go-to scheduler for teams building a data platform or pipelines.
  • Apache Airflow supports multiple operators, such as the Databricks, Spark, and Python operators. All of these provide us with functionality to implement any business logic.
  • Apache Airflow is highly scalable, and we can run a large number of DAGs with ease. It provided HA and replication for workers. Maintaining airflow deployments is very easy, even for smaller teams, and we also get lots of metrics for observability.
Read full review
Cons
Amazon AWS
  • It's very good for the hardcore programmer, but a little bit complex for a data scientist or new hire who does not have a strong programming background.
  • Most of the popular library and ML frameworks are there, but we still have to depend on them for new releases.
Read full review
Apache
  • UI/Dashboard can be updated to be customisable, and jobs summary in groups of errors/failures/success, instead of each job, so that a summary of errors can be used as a starting point for reviewing them.
  • Navigation - It's a bit dated. Could do with more modern web navigation UX. i.e. sidebars navigation instead of browser back/forward.
  • Again core functional reorg in terms of UX. Navigation can be improved for core functions as well, instead of discovery.
Read full review
Usability
Amazon AWS
No answers on this topic
Apache
For its capability to connect with multicloud environments. Access Control management is something that we don't get in all the schedulers and orchestrators. But although it provides so many flexibility and options to due to python , some level of knowledge of python is needed to be able to build workflows.
Read full review
Alternatives Considered
Amazon AWS
Amazon SageMaker took the heavy lifting out of building and creating models. It allowed for our organization to use our current system for integration and essentially added on a feature to help all levels of Data scientists and IT professionals in our department and company as a whole. The training was simple as well.
Read full review
Apache
Multiple DAGs can be orchestrated simultaneously at varying times, and runs can be reproduced or replicated with relative ease. Overall, utilizing Apache Airflow is easier to use than other solutions now on the market. It is simple to integrate in Apache Airflow, and the workflow can be monitored and scheduling can be done quickly using Apache Airflow. We advocate using this tool for automating the data pipeline or process.
Read full review
Return on Investment
Amazon AWS
  • We have been able to deliver data products more rapidly because we spend less time building data pipelines and model servers.
  • We can prototype more rapidly because it is easy to configure notebooks to access AWS resources.
  • For our use-cases, serving models is less expensive with SageMaker than bespoke servers.
Read full review
Apache
  • Impact Depends on number of workflows. If there are lot of workflows then it has a better usecase as the implementation is justified as it needs resources , dedicated VMs, Database that has a cost
  • Donot use it if you have very less usecases
Read full review
ScreenShots