Appen vs. TensorFlow

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Appen
Score 7.0 out of 10
N/A
The Appen platform combines human intelligence from over one million people all over the world with models to create training data for ML projects. Appen users can upload data to the Appen platform, and they provide the annotations, judgments, and labels needed to help create ground truth for models.N/A
TensorFlow
Score 8.0 out of 10
N/A
TensorFlow is an open-source machine learning software library for numerical computation using data flow graphs. It was originally developed by Google.N/A
Pricing
AppenTensorFlow
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
AppenTensorFlow
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
AppenTensorFlow
Top Pros

No answers on this topic

Top Cons

No answers on this topic

Best Alternatives
AppenTensorFlow
Small Businesses
Jupyter Notebook
Jupyter Notebook
Score 9.0 out of 10
Jupyter Notebook
Jupyter Notebook
Score 9.0 out of 10
Medium-sized Companies
Posit
Posit
Score 9.6 out of 10
Posit
Posit
Score 9.6 out of 10
Enterprises
Posit
Posit
Score 9.6 out of 10
Posit
Posit
Score 9.6 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
AppenTensorFlow
Likelihood to Recommend
10.0
(1 ratings)
6.1
(15 ratings)
Usability
-
(0 ratings)
9.0
(1 ratings)
Support Rating
-
(0 ratings)
9.1
(2 ratings)
Implementation Rating
-
(0 ratings)
8.0
(1 ratings)
User Testimonials
AppenTensorFlow
Likelihood to Recommend
Appen
It is well suited for the users and potential employee who are free of any job perspective and need their free time to be utilized. Users can use their free time to be used for submission of interesting tasks.
Whereas the number of tasks are very less and processing time is also very extensive and recruitment takes time more.
Read full review
Open Source
TensorFlow is great for most deep learning purposes. This is especially true in two domains: 1. Computer vision: image classification, object detection and image generation via generative adversarial networks 2. Natural language processing: text classification and generation. The good community support often means that a lot of off-the-shelf models can be used to prove a concept or test an idea quickly. That, and Google's promotion of Colab means that ideas can be shared quite freely. Training, visualizing and debugging models is very easy in TensorFlow, compared to other platforms (especially the good old Caffe days). In terms of productionizing, it's a bit of a mixed bag. In our case, most of our feature building is performed via Apache Spark. This means having to convert Parquet (columnar optimized) files to a TensorFlow friendly format i.e., protobufs. The lack of good JVM bindings mean that our projects end up being a mix of Python and Scala. This makes it hard to reuse some of the tooling and support we wrote in Scala. This is where MXNet shines better (though its Scala API could do with more work).
Read full review
Pros
Appen
  • Project listing
  • Hiring of the potential and qualified users
  • Tracking of the projects
Read full review
Open Source
  • A vast library of functions for all kinds of tasks - Text, Images, Tabular, Video etc.
  • Amazing community helps developers obtain knowledge faster and get unblocked in this active development space.
  • Integration of high-level libraries like Keras and Estimators make it really simple for a beginner to get started with neural network based models.
Read full review
Cons
Appen
  • Selection procedure is bit .
  • The questionnaire need to be reviewed.
Read full review
Open Source
  • RNNs are still a bit lacking, compared to Theano.
  • Cannot handle sequence inputs
  • Theano is perhaps a bit faster and eats up less memory than TensorFlow on a given GPU, perhaps due to element-wise ops. Tensorflow wins for multi-GPU and “compilation” time.
Read full review
Usability
Appen
No answers on this topic
Open Source
Support of multiple components and ease of development.
Read full review
Support Rating
Appen
No answers on this topic
Open Source
Community support for TensorFlow is great. There's a huge community that truly loves the platform and there are many examples of development in TensorFlow. Often, when a new good technique is published, there will be a TensorFlow implementation not long after. This makes it quick to ally the latest techniques from academia straight to production-grade systems. Tooling around TensorFlow is also good. TensorBoard has been such a useful tool, I can't imagine how hard it would be to debug a deep neural network gone wrong without TensorBoard.
Read full review
Implementation Rating
Appen
No answers on this topic
Open Source
Use of cloud for better execution power is recommended.
Read full review
Alternatives Considered
Appen
Appen offers projects mostly related to my native language and also according to my expertise . It offers very interesting projects to be completed , which requires not very expertise and less time to be completed for each task. It is also very convenient to use after selection for the task and also well rewarding against the time consumed for the task completion.
Read full review
Open Source
Keras is built on top of TensorFlow, but it is much simpler to use and more Python style friendly, so if you don't want to focus on too many details or control and not focus on some advanced features, Keras is one of the best options, but as far as if you want to dig into more, for sure TensorFlow is the right choice
Read full review
Return on Investment
Appen
  • It has Positive impact as it provides opportunity for new jobs in my area of expertise.
Read full review
Open Source
  • Learning is s bit difficult takes lot of time.
  • Developing or implementing the whole neural network is time consuming with this, as you have to write everything.
  • Once you have learned this, it make your job very easy of getting the good result.
Read full review
ScreenShots