Elasticsearch is an enterprise search tool from Elastic in Mountain View, California.
$16
per month
IBM DataStage
Score 7.7 out of 10
N/A
IBM® DataStage® is a data integration tool that helps users to design, develop and run jobs that move and transform data. At its core, the DataStage tool supports extract, transform and load (ETL) and extract, load and transform (ELT) patterns. A basic version of the software is available for on-premises deployment, and the cloud-based DataStage for IBM Cloud Pak® for Data offers automated integration capabilities in a hybrid or multicloud environment.
N/A
Pricing
Elasticsearch
IBM DataStage
Editions & Modules
Standard
$16.00
per month
Gold
$19.00
per month
Platinum
$22.00
per month
Enterprise
Contact Sales
No answers on this topic
Offerings
Pricing Offerings
Elasticsearch
IBM DataStage
Free Trial
No
Yes
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Elasticsearch
IBM DataStage
Features
Elasticsearch
IBM DataStage
Data Source Connection
Comparison of Data Source Connection features of Product A and Product B
Elasticsearch
-
Ratings
IBM DataStage
8.2
11 Ratings
0% below category average
Connect to traditional data sources
00 Ratings
8.511 Ratings
Connecto to Big Data and NoSQL
00 Ratings
8.010 Ratings
Data Transformations
Comparison of Data Transformations features of Product A and Product B
Elasticsearch
-
Ratings
IBM DataStage
7.7
11 Ratings
5% below category average
Simple transformations
00 Ratings
8.011 Ratings
Complex transformations
00 Ratings
7.511 Ratings
Data Modeling
Comparison of Data Modeling features of Product A and Product B
Elasticsearch
-
Ratings
IBM DataStage
6.9
11 Ratings
13% below category average
Data model creation
00 Ratings
6.58 Ratings
Metadata management
00 Ratings
5.010 Ratings
Business rules and workflow
00 Ratings
7.010 Ratings
Collaboration
00 Ratings
7.011 Ratings
Testing and debugging
00 Ratings
6.511 Ratings
Data Governance
Comparison of Data Governance features of Product A and Product B
Elasticsearch is a really scalable solution that can fit a lot of needs, but the bigger and/or those needs become, the more understanding & infrastructure you will need for your instance to be running correctly. Elasticsearch is not problem-free - you can get yourself in a lot of trouble if you are not following good practices and/or if are not managing the cluster correctly. Licensing is a big decision point here as Elasticsearch is a middleware component - be sure to read the licensing agreement of the version you want to try before you commit to it. Same goes for long-term support - be sure to keep yourself in the know for this aspect you may end up stuck with an unpatched version for years.
DataStage is somewhat outdated for an ETL. I guess that's what makes it a bit lagged behind its competitors. It can be used for data processing, sure, but its performance seems to be lagging behind or quite slow given the server it is running from. I won’t depend on this application if it's handling a lot of mission-critical banking and business data.
As I mentioned before, Elasticsearch's flexible data model is unparalleled. You can nest fields as deeply as you want, have as many fields as you want, but whatever you want in those fields (as long as it stays the same type), and all of it will be searchable and you don't need to even declare a schema beforehand!
Elastic, the company behind Elasticsearch, is super strong financially and they have a great team of devs and product managers working on Elasticsearch. When I first started using ES 3 years ago, I was 90% impressed and knew it would be a good fit. 3 years later, I am 200% impressed and blown away by how far it has come and gotten even better. If there are features that are missing or you don't think it's fast enough right now, I bet it'll be suitable next year because the team behind it is so dang fast!
Elasticsearch is really, really stable. It takes a lot to bring down a cluster. It's self-balancing algorithms, leader-election system, self-healing properties are state of the art. We've never seen network failures or hard-drive corruption or CPU bugs bring down an ES cluster.
Technical support is a key area IBM should improve for this product. Sometimes our case is assigned to a support engineer and he has no idea of the product or services.
Provide custom reports for datastage jobs and performance such as job history reports, warning messages or error messages.
Make it fully compatible with Oracle and users can direct use of Oracle ODBC drivers instead of Data Direct driver. Same for SQL server.
To get started with Elasticsearch, you don't have to get very involved in configuring what really is an incredibly complex system under the hood. You simply install the package, run the service, and you're immediately able to begin using it. You don't need to learn any sort of query language to add data to Elasticsearch or perform some basic searching. If you're used to any sort of RESTful API, getting started with Elasticsearch is a breeze. If you've never interacted with a RESTful API directly, the journey may be a little more bumpy. Overall, though, it's incredibly simple to use for what it's doing under the covers.
Because it is robust, and it is being continuously improved. DS is one of the most used and recognized tools in the market. Large companies have implemented it in the first instance to develop their DW, but finding the advantages it has, they could use it for other types of projects such as migrations, application feeding, etc.
It could load thousands of records in seconds. But in the Parallel version, you need to understand how to particionate the data. If you use the algorithms erroneously, or the functionalities that it gives for the parsing of data, the performance can fall drastically, even with few records. It is necessary to have people with experience to be able to determine which algorithm to use and understand why.
We've only used it as an opensource tooling. We did not purchase any additional support to roll out the elasticsearch software. When rolling out the application on our platform we've used the documentation which was available online. During our test phases we did not experience any bugs or issues so we did not rely on support at all.
IBM offers different levels of support but in my experience being and IBM shop helps to get direct support from more knowledgeable technicians from IBM. Not sure on the cost of having this kind of support, but I know there's also general support and community blogs and websites on the Internet make it easy to troubleshoot issues whenever there's need for that.
As far as we are concerned, Elasticsearch is the gold standard and we have barely evaluated any alternatives. You could consider it an alternative to a relational or NoSQL database, so in cases where those suffice, you don't need Elasticsearch. But if you want powerful text-based search capabilities across large data sets, Elasticsearch is the way to go.
With effective capabilities and easy to manipulate the features and easy to produce accurate data analytics and the Cloud services Automation, this IBM platform is more reliable and easy to document management. The features on this platform are equipped with excellent big data management and easy to provide accurate data analytics.
We have had great luck with implementing Elasticsearch for our search and analytics use cases.
While the operational burden is not minimal, operating a cluster of servers, using a custom query language, writing Elasticsearch-specific bulk insert code, the performance and the relative operational ease of Elasticsearch are unparalleled.
We've easily saved hundreds of thousands of dollars implementing Elasticsearch vs. RDBMS vs. other no-SQL solutions for our specific set of problems.
It’s hard to say at this point, it delivers, but not quite as I expected. It takes a lot of resources to manage and sort this out (manpower, financial).
Definitely, I don’t have the exact numbers, but given the data it processes, it is A LOT. So props to the developer of this application.
Again, based on my experience, I’d choose other ETL apps if there is one that's more user-friendly.