HPE Data Fabric (formerly MapR, acquired by HPE in 2019) is a software-defined datastore and file system that simplifies data management and analytics by unifying data across core, edge, and multicloud sources into a single platform.
Hortonworks and Cloudera are both sort of hacky. We have to do a lot of extra steps to automate those two. MapR has far fewer issues and doesn't force you into a once size fits all deployment scenario. There are multiple ways to deploy and some are more amenable to automation, …
When we were shopping, Mapr had the momentum, high availability even on Hadoop 1.x, an improved file system and better a central control system. Now it looks like the situation has changed a lot.
We supported all three Hadoop vendors with our Hadoop RDBMS product. Here's how I see the commercial Hadoop distribution world. If you need raw performance and don't mind proprietary technology, go with MapR. If you care about the most pure open source, go with Hortonworks. If …
MapR had very fast I/O throughput. The write speed was several times faster than what we could achieve with the other Hadoop vendors (Cloudera and Hortonworks). This is because MapR does not use HDFS, which is essentially a "meta filesystem". HDFS is built on top of the filesystem provided by the OS. MapR has their filesystem called MapR-FS, which is a true filesystem and accesses the raw disk drives.
The MapR filesystem is very easy to integrate with other Linux filesystems. When working with HDFS from Apache Hadoop, you usually have to use either the HDFS API or various Hadoop/HDFS command line utilities to interact with HDFS. You cannot use command line utilities native to the host operation system, which is usually Linux. At least, it is not easily done without setting up NFS, gateways, etc. With MapR-FS, you can mount the filesystem within Linux and use the standard Unix commands to manipulate files.
The HBase distribution provided by MapR is very similar to the Apache HBase distribution. Cloudera and Hortonworks add GUIs and other various tools on top of their HBase distributions. The MapR HBase distribution is very similar to the Apache distribution, which is nice if you are more accustomed to using Apache HBase.
Increased employee efficiency for sure. Our clients have various levels of expertise in their deployment and user teams, and we never receive complaints about MapR.
MapR is used by one of our financial services clients who uses it for fraud detection and user pattern analysis. They are able to turn around data much faster than they previously had with in-house applications