Amazon Comprehend is a natural language processing (NLP) service that uses machine learning to find insights and relationships in text. Amazon Comprehend uses machine learning to help uncover insights and relationships in unstructured data. The service identifies the language of the text; extracts key phrases, places, people, brands, or events; understands how positive or negative the text is; analyzes text using tokenization and parts of speech; and automatically organizes a collection of text…
$0
per unit
KNIME Analytics Platform
Score 7.9 out of 10
N/A
KNIME enables users to analyze, upskill, and scale data science without any coding. The platform that lets users blend, transform, model and visualize data, deploy and monitor analytical models, and share insights organization-wide with data apps and services.
$0
per month
Pricing
Amazon Comprehend
KNIME Analytics Platform
Editions & Modules
Syntax Analysis
$0.00005
per unit
Key Phrase Extraction
$0.0001
per unit
Sentiment Analysis
$0.0001
per unit
Entity Recognition
$0.0001
per unit
Language Detection
$0.0001
per unit
Pll Detection
$0.0001
per unit
Event Detection Per Event Type
$0.003
per unit
KNIME Community Hub Personal Plan
$0
KNIME Analytics Platform
$0
KNIME Community Hub Team Plan
€99
per month 3 users
KNIME Business Hub
From €35,000
per year
Offerings
Pricing Offerings
Amazon Comprehend
KNIME Analytics Platform
Free Trial
Yes
No
Free/Freemium Version
No
Yes
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Amazon Comprehend
KNIME Analytics Platform
Features
Amazon Comprehend
KNIME Analytics Platform
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Amazon Comprehend
-
Ratings
KNIME Analytics Platform
9.2
19 Ratings
9% above category average
Connect to Multiple Data Sources
00 Ratings
9.619 Ratings
Extend Existing Data Sources
00 Ratings
10.010 Ratings
Automatic Data Format Detection
00 Ratings
9.119 Ratings
MDM Integration
00 Ratings
7.98 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Amazon Comprehend
-
Ratings
KNIME Analytics Platform
8.1
18 Ratings
3% below category average
Visualization
00 Ratings
8.018 Ratings
Interactive Data Analysis
00 Ratings
8.118 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Amazon Comprehend
-
Ratings
KNIME Analytics Platform
8.3
19 Ratings
2% above category average
Interactive Data Cleaning and Enrichment
00 Ratings
9.019 Ratings
Data Transformations
00 Ratings
9.519 Ratings
Data Encryption
00 Ratings
7.47 Ratings
Built-in Processors
00 Ratings
7.48 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Amazon Comprehend
-
Ratings
KNIME Analytics Platform
8.0
18 Ratings
5% below category average
Multiple Model Development Languages and Tools
00 Ratings
9.517 Ratings
Automated Machine Learning
00 Ratings
8.217 Ratings
Single platform for multiple model development
00 Ratings
9.318 Ratings
Self-Service Model Delivery
00 Ratings
5.08 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Specifically, it starts processing millions of documents in minutes by leveraging the power of machine learning without having trained models from scratch. If any of the content contains personally identifiable information not only can Amazon Comprehend locate it but it will also redact or mask it. Using NLP techniques Amazon Comprehend goes well beyond keyword search or rules-based tagging to accurately classify documents. For my task or development, I cannot find any difficulties with Amazon Comprehend.
KNIME Analytics Platform is excellent for people who are finding Excel frustrating, this can be due to errors creeping in due to manual changes or simply that there are too many calculations which causes the system to slow down and crash. This is especially true for regular reporting where a KNIME Analytics Platform workflow can pull in the most recent data, process it and provide the necessary output in one click. I find KNIME Analytics Platform especially useful when talking with audiences who are intimidated by code. KNIME Analytics Platform allows us to discuss exactly how data is processed and an analysis takes place at an abstracted level where non-technical users are happy to think and communicate which is often essential when they are subject matter experts whom you need for guidance. For experienced programmers KNIME Analytics Platform is a double-edged sword. Often programmers wish to write their own code because they are more efficient working that way and are constrained by having to think and implement work in nodes. However, those constraints forcing development in a "KNIME way" are useful when working in teams and for maintenance compared to some programmers' idiosyncratic styles.
Amazon Comprehend identifies the language of the text and extracts Key-phrases, places, people, brands or events.
It can build a custom set of entities or text classification models that are tailored uniquely to the organisation's need
Amazon Comprehend's medical can be used to identify medical conditions, medications, dosages, strength and frequencies from sources like doctor's notes, clinical trial reports and patient health records. This service is very good and with well an accuracy or confidence score.
We are happy with Knime product and their support. Knime AP is versatile product and even can execute Python scripts if needed. It also supports R execution as well; however, it is not being used at our end
KNIME Analytics Platform offers a great tradeoff between intuitiveness and simplicity of the user interface and almost limitless flexibility. There are tools that are even easier to adopt by someone new to analytics, but none that would provide the scalability of KNIME when the user skills and application complexity grows
KNIME's HQ is in Europe, which makes it hard for US companies to get customer service in time and on time. Their customer service also takes on average 1 to 2 weeks to follow up with your request. KNIME's documentation is also helpful but it does not provide you all the answers you need some of the time.
KNIME Analytics Platform is easy to install on any Windows, Mac or Linux machine. The KNIME Server product that is currently being replaced by the KNIME Business Hub comes as multiple layers of software and it took us some time to set up the system right for stability. This was made harder by KNIME staff's deeper expertise in setting up the Server in Linux rather than Windows environment. The KNIME Business Hub promises to have a simpler architecture, although currently there is no visibility of a Windows version of the product.
For natural language processing tasks or techniques, there are many service providers out there in the market such as Azure Cloud Services, IBM Watson and Google Cloud Platform (GCP), but compared with them, Amazon Comprehend is the best service provider in contents of accuracy, speed of processing multilingual text, supporting SDK for most of the languages and well documented.
Having used both the Alteryx and [KNIME Analytics] I can definitely feel the ease of using the software of Alteryx. The [KNIME Analytics] on the other hand isn't that great but is 90% of what Alteryx can do along with how much ease it can do. Having said that, the 90% functionality and UI at no cost would be enough for me to quit using Alteryx and move towards [KNIME Analytics].
It supports better and accurately as compared with our existing or old implementations. So, we fulfil our needs as per clients' requirements and it will help to grow or improve client satisfaction.
For these specific requirements, we do not require any machine learning engineers or related professionals to hire in our organisation.
None of any negative sides can be affected our business or distract existing clients.
It is suited for data mining or machine learning work but If we're looking for advanced stat methods such as mixed effects linear/logistics models, that needs to be run through an R node.
Thinking of our peers with an advanced visualization techniques requirement, it is a lagging product.