AMIs are Amazon Machine Images, virtual appliance deployed on EC2. The AWS Deep Learning AMIs provide machine learning practitioners and researchers with the infrastructure and tools to accelerate deep learning in the cloud, at scale. Users can launch Amazon EC2 instances pre-installed with deep learning frameworks and interfaces such as TensorFlow, PyTorch, Apache MXNet, Chainer, Gluon, Horovod, and Keras to train sophisticated, custom AI models, experiment with new algorithms, or to learn new…
N/A
Saturn Cloud
Score 7.7 out of 10
N/A
Saturn Cloud is an ML platform for individuals and teams, available on multiple clouds: AWS, Azure, GCP, and OCI. It provides access to computing resources with customizable amounts of memory and power, including GPUs and Dask distributed computing clusters, in a wholly hosted environment. Saturn Cloud is presented as flexible and straightforward for new data scientists while giving senior and experienced staff the
capabilities and configurability they need.…
Amazon AMIs has been very useful for the quick setup and implementation of deep learning for data analysis which is something I have used the service for in my own research. We commonly use the service to enable students to run intensive deep learning algorithms for their assessments. This service works well in this scenario as it allows students to quickly set up a suitable environment and get started with little hassle. If you are looking to run simple, surface level deep learning algorithms (kind of contradictory statement I know) then AMI is more complicated than most will need. When it comes to teaching the basics of Machine Learning, this kind of system is unnecessary and there are other alternatives which can be used. That being said this service is a must if you are looking to run complex deep learning via the cloud.
Saturn Cloud is a powerful data science platform that offers numerous benefits to organizations. It simplifies and streamlines the development, deployment, and scaling of data science and machine learning models. The platform addresses common business problems such as scalability, collaboration, efficiency, and cost-effectiveness. With Saturn Cloud, organizations can easily handle large datasets and complex computations, collaborate effectively among data science teams, automate repetitive tasks, optimize workflows, and utilize flexible and cost-efficient cloud resources. By leveraging Saturn Cloud, organizations can accelerate their data science projects, improve productivity, and achieve better outcomes in areas such as predictive modeling, recommendation systems, fraud detection, and more.
While Saturn Cloud offers a range of pre-built templates and workflows, there is currently limited support for customization. For example, users may not be able to modify the pre-configured environments that come with the templates, or may find it difficult to integrate their own custom libraries and tools. Offering more flexibility in this area could help users tailor the platform to their specific needs and workflows.
While Saturn Cloud offers a variety of pre-built environments for data science and machine learning workloads, some users may prefer to use custom Docker images instead. However, the platform currently has limited support for Docker, which can be a limitation for users who need to work with specific dependencies or custom libraries. Adding more robust support for Docker could help to make the platform more versatile and adaptable to a wider range of use cases.
This is user friendly , better than its counterparts. Anyone familiar working with other cloud solutions for GPU will agree on this. Hence the rating of 10 was given to this. I personally love the fact that I get so much compute time for being a free user which is very efficient in terms of budget
Both of these services provide similar functionality and from my experience both are top class services which cover most of your needs. I think ultimately it comes down to what you need each service for. For example Amazon DL AMIs allows for clustering by default meaning I am able to run several clustering algorithms without a problem whereas IBM Watson Studio doesn't provide this functionality. They both provide a wide range of default packages such as Amazon providing caffe-2 and IBM providing sci-kitlearn. My main point is that both are very good services which have very similar functionality, you just need to think about the costs, suitability of features and integration with other services you are using.
Saturn Cloud provides an R server, that's super important. Even you can write R on CoLab with different settings, but it is inconvenient and slow. Saturn Cloud can give me a different IDE environment that I'm more used to, even if I'm using Python. Whereas CoLab is more dedicated to Jupyter notebook
Although we are still in the implementation phase with Saturn Cloud, we anticipate significant positive impacts on our business objectives.
The platform is expected to enhance our computational capabilities with its easy access to top-tier NVIDIA GPUs, which should accelerate our AI and machine learning projects. We believe this will lead to reduced development times and faster deployment of our generative AI models.
While Saturn Cloud provides excellent computational resources and reliable uptime, I find that their user interface could be improved. The UI can be unintuitive at times, making it a bit challenging to navigate and configure certain settings. Enhancing the user interface to be more streamlined and user-friendly would significantly improve the overall experience. Having pre-configured stacks readily available would also save time and make the platform even more efficient to use.