Amazon DocumentDB (with MongoDB compatibility) is presented by the vendor as a fast, scalable, highly available, and fully managed document database service that supports MongoDB workloads. As a document database, Amazon DocumentDB is designed to make it easy to store, query, and index JSON data.
N/A
Cassandra
Score 8.8 out of 10
N/A
Cassandra is a no-SQL database from Apache.
N/A
Pricing
Amazon DocumentDB (with MongoDB compatibility)
Apache Cassandra
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Amazon DocumentDB (with MongoDB compatibility)
Cassandra
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Amazon DocumentDB (with MongoDB compatibility)
Apache Cassandra
Features
Amazon DocumentDB (with MongoDB compatibility)
Apache Cassandra
NoSQL Databases
Comparison of NoSQL Databases features of Product A and Product B
AWS Document DB (with MongoDB compatibility) is well suited when for all the workloads due to its huge feature offerings which will reduce our operational overhead and due to that we can focus more on our WorkLoad rather than optimising and fine tuning Databases. Its Offerings are Advanced Monitoring, DB cluster Upgrades, Migration Assistant, High Availability, Fault Tolerance, Data Durability, Security, Storage Auto Scaling, Backup Restore policies.AWS Document DB (with MongoDB compatibility) some of the features that are there in some other services like MongoDB Atlas that offers vast amount of features plus Supports Multi Cloud while Deploying Database clusters, Immediate support to latest Mongo DB versions, Mobile & Edge Sync like Atlas Edge Sync, Freedom to choose Database deployment in Any top Public Cloud, Having more then 100 plus Monitoring and Telemetry metrics for index and schema recommendations, More Compatibility with MongoDB queries.
Apache Cassandra is a NoSQL database and well suited where you need highly available, linearly scalable, tunable consistency and high performance across varying workloads. It has worked well for our use cases, and I shared my experiences to use it effectively at the last Cassandra summit! http://bit.ly/1Ok56TK It is a NoSQL database, finally you can tune it to be strongly consistent and successfully use it as such. However those are not usual patterns, as you negotiate on latency. It works well if you require that. If your use case needs strongly consistent environments with semantics of a relational database or if the use case needs a data warehouse, or if you need NoSQL with ACID transactions, Apache Cassandra may not be the optimum choice.
Amazon DocumentDB (with MongoDB compatibility) provides Auto scaling of cluster as a by default functionality through this we can focus on more on our applications end
Through AWS Document DB without much operation overhead we can configure for Database's high availability, Durability, Backup Restores policies, Advanced Monitoring, Security Parameters.
Also they can provide us a Guide for Database Migration from any Supported Mongo DB vendor to AWS Document DB.
Via AWS Document DB query Logging ( Profiling ) we can fine tune our database queries and hence improving our END to END Customer Experience and Product Enhancements.
Continuous availability: as a fully distributed database (no master nodes), we can update nodes with rolling restarts and accommodate minor outages without impacting our customer services.
Linear scalability: for every unit of compute that you add, you get an equivalent unit of capacity. The same application can scale from a single developer's laptop to a web-scale service with billions of rows in a table.
Amazing performance: if you design your data model correctly, bearing in mind the queries you need to answer, you can get answers in milliseconds.
Time-series data: Cassandra excels at recording, processing, and retrieving time-series data. It's a simple matter to version everything and simply record what happens, rather than going back and editing things. Then, you can compute things from the recorded history.
Cassandra runs on the JVM and therefor may require a lot of GC tuning for read/write intensive applications.
Requires manual periodic maintenance - for example it is recommended to run a cleanup on a regular basis.
There are a lot of knobs and buttons to configure the system. For many cases the default configuration will be sufficient, but if its not - you will need significant ramp up on the inner workings of Cassandra in order to effectively tune it.
I would recommend Cassandra DB to those who know their use case very well, as well as know how they are going to store and retrieve data. If you need a guarantee in data storage and retrieval, and a DB that can be linearly grown by adding nodes across availability zones and regions, then this is the database you should choose.
We evaluated MongoDB also, but don't like the single point failure possibility. The HBase coupled us too tightly to the Hadoop world while we prefer more technical flexibility. Also HBase is designed for "cold"/old historical data lake use cases and is not typically used for web and mobile applications due to its performance concern. Cassandra, by contrast, offers the availability and performance necessary for developing highly available applications. Furthermore, the Hadoop technology stack is typically deployed in a single location, while in the big international enterprise context, we demand the feasibility for deployment across countries and continents, hence finally we are favor of Cassandra
I have no experience with this but from the blogs and news what I believe is that in businesses where there is high demand for scalability, Cassandra is a good choice to go for.
Since it works on CQL, it is quite familiar with SQL in understanding therefore it does not prevent a new employee to start in learning and having the Cassandra experience at an industrial level.