Amazon EMR is a cloud-native big data platform for processing vast amounts of data quickly, at scale. Using open source tools such as Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi (Incubating), and Presto, coupled with the scalability of Amazon EC2 and scalable storage of Amazon S3, EMR gives analytical teams the engines and elasticity to run Petabyte-scale analysis.
N/A
Amazon SageMaker
Score 8.3 out of 10
N/A
Amazon SageMaker enables developers and data scientists to quickly and easily build, train, and deploy machine learning models at any scale. Amazon SageMaker removes all the barriers that typically slow down developers who want to use machine learning.
We are running it to perform preparation which takes a few hours on EC2 to be running on a spark-based EMR cluster to total the preparation inside minutes rather than a few hours. Ease of utilization and capacity to select from either Hadoop or spark. Processing time diminishes from 5-8 hours to 25-30 minutes compared with the Ec2 occurrence and more in a few cases.
Amazon SageMaker is a great tool for developing machine learning models that take more effort than just point-and-click type of analyses. The software works well with the other tools in the Amazon ecosystem, so if you use Amazon Web Services or are thinking about it, SageMaker would be a great addition. SageMaker is great for consumer insights, predictive analytics, and looking for gems of insight in the massive amounts of data we create. SageMaker is less suitable for analysts who do generally "small" data analyses, and "small" data analyses in today's world can be billions of records.
Amazon Elastic MapReduce works well for managing analyses that use multiple tools, such as Hadoop and Spark. If it were not for the fact that we use multiple tools, there would be less need for MapReduce.
MapReduce is always on. I've never had a problem getting data analyses to run on the system. It's simple to set up data mining projects.
Amazon Elastic MapReduce has no problems dealing with very large data sets. It processes them just fine. With that said, the outputs don't come instantaneously. It takes time.
Sometimes bootstrapping certain tools comes with debugging costs. The tools provided by some of the enterprise editions are great compared to EMR.
Like some of the enterprise editions EMR does not provide on premises options.
No UI client for saving the workbooks or code snippets. Everything has to go through submitting process. Not really convenient for tracking the job as well.
I give Amazon EMR this rating because while it is great at simplifying running big data frameworks, providing the Amazon EMR highlights, product details, and pricing information, and analyzing vast amounts of data, it can be run slow, freeze and glitch sometimes. So overall Amazon EMR is pretty good to use other than some basic issues.
There's a vast group of trained and certified (by AWS) professionals ready to work for anyone that needs to implement, configure or fix EMR. There's also a great amount of documentation that is accessible to anyone who's trying to learn this. And there's also always the help of AWS itself. They have people ready to help you analyze your needs and then make a recommendation.
Snowflake is a lot easier to get started with than the other options. Snowflake's data lake building capabilities are far more powerful. Although Amazon EMR isn't our first pick, we've had an excellent experience with EC2 and S3. Because of our current API interfaces, it made more sense for us to continue with Hadoop rather than explore other options.
Amazon SageMaker comes with other supportive services like S3, SQS, and a vast variety of servers on EC2. It's very comfortable to manage the process and also support the end application by one click hosting option. Also, it charges on the base of what you use and how long you use it, so it becomes less costly compared to others.