Amazon EMR (Elastic MapReduce) vs. Apache Hadoop

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Amazon EMR
Score 8.8 out of 10
N/A
Amazon EMR is a cloud-native big data platform for processing vast amounts of data quickly, at scale. Using open source tools such as Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi (Incubating), and Presto, coupled with the scalability of Amazon EC2 and scalable storage of Amazon S3, EMR gives analytical teams the engines and elasticity to run Petabyte-scale analysis.N/A
Hadoop
Score 7.8 out of 10
N/A
Hadoop is an open source software from Apache, supporting distributed processing and data storage. Hadoop is popular for its scalability, reliability, and functionality available across commoditized hardware.N/A
Pricing
Amazon EMR (Elastic MapReduce)Apache Hadoop
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Amazon EMRHadoop
Free Trial
NoNo
Free/Freemium Version
NoYes
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Amazon EMR (Elastic MapReduce)Apache Hadoop
Considered Both Products
Amazon EMR
Chose Amazon EMR (Elastic MapReduce)
Apache Hadoop required us to do all the leg work and we did not have the resources for that. It was ideal that AWS offers a MapReduce solution as we use it to host various servers. It is one place for all our needs. Very convenient. Apache Hadoop is still a good product but …
Chose Amazon EMR (Elastic MapReduce)
The alternatives to EMR are mainly hadoop distributions owned by the 3 companies above. I have not used the other distributions so it is difficult to comment, but the general tradeoff is, at the cost of a longer setup time and more infra management, you get more flexible …
Chose Amazon EMR (Elastic MapReduce)
Having one of these enterprise edition license comes at its own costs. But, the flexibility to have the cluster spin up with the workbenches and code snippets on the same is really beneficial. Especially, if one had to move out of EMR and consider an option which reduces the …
Chose Amazon EMR (Elastic MapReduce)
EMR provides dynamic cluster size, lots of documentation, and integration with other Amazon Web Services which are some of the things that Cloudera distribution for Hadoop lacked. Some products are hard to learn but EMR was much easier and helped save time spent on trying to …
Hadoop
Chose Apache Hadoop
It’s open source nature
it’s community support
its being configurable
Chose Apache Hadoop
Hadoop offers a scalable, cost-effective and highly available solution for big data storage and processing. The use of a non-proprietary physical layer greatly reduces dependency on technology. It also offers elastic dimensioning capability when deployed on virtual machines or …
Chose Apache Hadoop
Hadoop was a cheaper alternative to Amazon. Since I had to pay for every minute I use with Amazon, I had to make sure multiple times that the code was good enough before I purchased with Amazon. But since Hadoop was available on the cluster, I had the opportunity to code on the …
Best Alternatives
Amazon EMR (Elastic MapReduce)Apache Hadoop
Small Businesses

No answers on this topic

No answers on this topic

Medium-sized Companies
Cloudera Manager
Cloudera Manager
Score 9.9 out of 10
Cloudera Manager
Cloudera Manager
Score 9.9 out of 10
Enterprises
IBM Analytics Engine
IBM Analytics Engine
Score 8.5 out of 10
IBM Analytics Engine
IBM Analytics Engine
Score 8.5 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Amazon EMR (Elastic MapReduce)Apache Hadoop
Likelihood to Recommend
8.0
(19 ratings)
8.0
(37 ratings)
Likelihood to Renew
-
(0 ratings)
9.6
(8 ratings)
Usability
7.0
(4 ratings)
8.0
(6 ratings)
Performance
-
(0 ratings)
8.0
(1 ratings)
Support Rating
9.0
(3 ratings)
7.5
(3 ratings)
Online Training
-
(0 ratings)
6.1
(2 ratings)
User Testimonials
Amazon EMR (Elastic MapReduce)Apache Hadoop
Likelihood to Recommend
Amazon AWS
We are running it to perform preparation which takes a few hours on EC2 to be running on a spark-based EMR cluster to total the preparation inside minutes rather than a few hours. Ease of utilization and capacity to select from either Hadoop or spark. Processing time diminishes from 5-8 hours to 25-30 minutes compared with the Ec2 occurrence and more in a few cases.
Read full review
Apache
Altogether, I want to say that Apache Hadoop is well-suited to a larger and unstructured data flow like an aggregation of web traffic or even advertising. I think Apache Hadoop is great when you literally have petabytes of data that need to be stored and processed on an ongoing basis. Also, I would recommend that the software should be supplemented with a faster and interactive database for a better querying service. Lastly, it's very cost-effective so it is good to give it a shot before coming to any conclusion.
Read full review
Pros
Amazon AWS
  • EMR does well in managing the cost as it uses the task node cores to process the data and these instances are cheaper when the data is stored on s3. It is really cost efficient. No need to maintain any libraries to connect to AWS resources.
  • EMR is highly available, secure and easy to launch. No much hassle in launching the cluster (Simple and easy).
  • EMR manages the big data frameworks which the developer need not worry (no need to maintain the memory and framework settings) about the framework settings. It's all setup on launch time. The bootstrapping feature is great.
Read full review
Apache
  • Handles large amounts of unstructured data well, for business level purposes
  • Is a good catchall because of this design, i.e. what does not fit into our vertical tables fits here.
  • Decent for large ETL pipelines and logging free-for-alls because of this, also.
Read full review
Cons
Amazon AWS
  • It would have been better if packages like HBase and Flume were available with Amazon EMR. This would make the product even more helpful in some cases.
  • Products like Cloudera provide the options to move the whole deployment into a dedicated server and use it at our discretion. This would have been a good option if available with EMR.
  • If EMR gave the option to be used with any choice of cloud provider, it would have helped instead of having to move the data from another cloud service to S3.
Read full review
Apache
  • Less organizational support system. Bugs need to be fixed and outside help take a long time to push updates
  • Not for small data sets
  • Data security needs to be ramped up
  • Failure in NameNode has no replication which takes a lot of time to recover
Read full review
Likelihood to Renew
Amazon AWS
No answers on this topic
Apache
Hadoop is organization-independent and can be used for various purposes ranging from archiving to reporting and can make use of economic, commodity hardware. There is also a lot of saving in terms of licensing costs - since most of the Hadoop ecosystem is available as open-source and is free
Read full review
Usability
Amazon AWS
Documentation is quite good and the product is regularly updated, so new features regularly come out. The setup is straightforward enough, especially once you have already established the overall platform infrastructure and the aws-cli APIs are easy enough to use. It would be nice to have some out-of-the-box integrations for checking logs and the Spark UI, rather than relying on know-how and digging through multiple levels to find the informations
Read full review
Apache
As Hadoop enterprise licensed version is quite fine tuned and easy to use makes it good choice for Hadoop administrators. It’s scalability and integration with Kerberos is good option for authentication and authorisation. installation can be improved. logging can be improved so that it become easier for debugging purposes. parallel processing of data is achieved easily.
Read full review
Support Rating
Amazon AWS
I give the overall support for Amazon EMR this rating because while the support technicians are very knowledgeable and always able to help, it sometimes takes a very long time to get in contact with one of the support technicians. So overall the support is pretty good for Amazon EMR.
Read full review
Apache
It's a great value for what you pay, and most Data Base Administrators (DBAs) can walk in and use it without substantial training. I tend to dabble on the analyst side, so querying the data I need feels like it can take forever, especially on higher traffic days like Monday.
Read full review
Online Training
Amazon AWS
No answers on this topic
Apache
Hadoop is a complex topic and best suited for classrom training. Online training are a waste of time and money.
Read full review
Alternatives Considered
Amazon AWS
Snowflake is a lot easier to get started with than the other options. Snowflake's data lake building capabilities are far more powerful. Although Amazon EMR isn't our first pick, we've had an excellent experience with EC2 and S3. Because of our current API interfaces, it made more sense for us to continue with Hadoop rather than explore other options.
Read full review
Apache
Not used any other product than Hadoop and I don't think our company will switch to any other product, as Hadoop is providing excellent results. Our company is growing rapidly, Hadoop helps to keep up our performance and meet customer expectations. We also use HDFS which provides very high bandwidth to support MapReduce workloads.
Read full review
Return on Investment
Amazon AWS
  • It was obviously cheaper and convenient to use as most of our data processing and pipelines are on AWS. It was fast and readily available with a click and that saved a ton of time rather than having to figure out the down time of the cluster if its on premises.
  • It saved time on processing chunks of big data which had to be processed in short period with minimal costs. EMR solved this as the cluster setup time and processing was simple, easy, cheap and fast.
  • It had a negative impact as it was very difficult in submitting the test jobs as it lags a UI to submit spark code snippets.
Read full review
Apache
  • There are many advantages of Hadoop as first it has made the management and processing of extremely colossal data very easy and has simplified the lives of so many people including me.
  • Hadoop is quite interesting due to its new and improved features plus innovative functions.
Read full review
ScreenShots