Amazon Kinesis is a streaming analytics suite for data intake from video or other disparate sources and applying analytics for machine learning (ML) and business intelligence.
$0.01
per GB data ingested / consumed
IBM Streams (discontinued)
Score 9.0 out of 10
N/A
A real-time analytics solution that turns fast-moving volumes and varieties into insights. Streams evaluates a broad range of streaming data — unstructured text, video, audio, geospatial and sensor. The product was sunsetted in 2024.
N/A
Pricing
Amazon Kinesis
IBM Streams (discontinued)
Editions & Modules
Amazon Kinesis Video Streams
$0.00850
per GB data ingested / consumed
Amazon Kinesis Data Streams
$0.04
per hour per stream
Amazon Kinesis Data Analytics
$0.11
per hour
Amazon Kinesis Data Firehose
tiered pricing starting at $0.029
per month first 500 TB ingested
No answers on this topic
Offerings
Pricing Offerings
Amazon Kinesis
IBM Streams (discontinued)
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Amazon Kinesis
IBM Streams (discontinued)
Features
Amazon Kinesis
IBM Streams (discontinued)
Streaming Analytics
Comparison of Streaming Analytics features of Product A and Product B
Amazon Kinesis is a great replacement for Kafka and it works better whenever the components of the solution are AWS based. Best if extended fan-out is not required, but still price-performance ratio is very good for simplifying maintenance.
I would go with a different option if the systems to be connected are legacy, for instance in the case of traditional messaging clients.
Like the name says, it is good for streaming data and analyzing. It is great to look at tuples at a fast rate, filtering, calling other sources to enrich data, can call APIs, etc. Could do better for ingest use cases, can do better with guaranteed delivery, etc.
IBM Streams is well suited for providing wire-speed real-time end-to-end processing with sub-millisecond latency.
Streams is amazingly computationally efficient. In other words, you can typically do much more processing with a given amount of hardware than other technologies. In a recent linear-road benchmark Streams based application was able to provide greater capability than the Hadoop-based implementation using 10x less hardware. So even when latency isn't critical, using Streams might still make sense for reducing operational cost.
Streams comes out of the box with a large and comprehensive set of tested and optimized toolkits. Leveraging these toolkits not only reduces the development time and cost but also helps reduce project risk by eliminating the need for custom code which likely has not seen as much time in test or production.
In addition to the out of the box toolkits, there is an active developer community contributing additional specialized packages.
The documentation was confusing and lacked examples. The streams suddenly stopped working with no explanation and there was no information in the logs. All these were more difficult when dealing with enhanced fan-out. In fact, we were about to abort the usage of Kinesis due to a misunderstanding with enhanced fan-out.
The main benefit was around set up - incredibly easy to just start using Kinesis. Kinesis is a real-time data processing platform, while Kafka is more of a message queue system. If you only need a message queue from a limited source, Kafka may do the job. More complex use cases, with low latency, higher volume of data, real time decisions and integration with multiple sources and destination at a decent price, Kinesis is better.
There are well explained tutorials to get the user started. If you are looking for business application ideas, the user community offers a diversity of applications. It is very easy to launch applications on the cloud and can integrate with other analytic tools available on Watson Studio. It takes away the burden of the technology so that users can focus on business innovations.