Amazon Relational Database Service (Amazon RDS) is a database-as-a-service (DBaaS) from Amazon Web Services.
N/A
ClickHouse
Score 7.5 out of 10
N/A
ClickHouse is an open-source, column-oriented OLAP database system enabling real-time analytical reports using SQL queries. With linear scalability, it handles trillions of rows and petabytes of data. ClickHouse Cloud offers a scalable serverless solution for real-time analytics.
N/A
Pricing
Amazon Relational Database Service (RDS)
ClickHouse
Editions & Modules
Amazon RDS for PostgreSQL
$0.24 ($0.48)
per hour, R5 Large (R5 Extra Large)
Amazon RDS for MariaDB
$0.25 ($0.50)
per hour, R5 Large (R5 Extra Large)
Amazon RDS for MySQL
$0.29 ($0.58)
per hour, R5 Large (R5 Extra Large)
Amazon RDS for Oracle
$0.482 ($0.964)
per hour, R5 Large (R5 Extra Large)
Amazon RDS for SQL Server
$1.02 ($1.52)
per hour, R5 Large (R5 Extra Large)
No answers on this topic
Offerings
Pricing Offerings
Amazon RDS
ClickHouse
Free Trial
No
Yes
Free/Freemium Version
No
Yes
Premium Consulting/Integration Services
No
Yes
Entry-level Setup Fee
Optional
Optional
Additional Details
—
Pay for what is used:
It automatically scales up and down compute resources based on the user's workload
It scales storage and compute separately
It automatically scales unused resources down to zero so that users don’t pay for idle services
If your application needs a relational data store and uses other AWS services, AWS RDS is a no-brainer. It offers all the traditional database features, makes it a snap to set up, creates cross-region replication, has advanced security, built-in monitoring, and much more at a very good price. You can also set up streaming to a data lake using various other AWS services on your RDS.
The most important thing when using ClickHouse is to be clear that the scenarios in which you want to use it really are the right ones. Many users think that when a database is very fast for a specific use case, it can be extrapolated to other contexts (most of the time different) in which a previous analysis has not been carried out.
ClickHouse is an analytical database, as such, it should be used for such purposes, where the information is stored correctly, the data volumes are really large and the queries to be performed are not the typical traditional queries on several columns with multiple aggregations. ClickHouse is not the solution for this.
On the other hand, if your case is not one of the above, it is quite possible that ClickHouse can help you. Where ClickHouse shines is when you are looking for aggregation over a particular column in large volumes of data.
Automated Database Management: We use it for streamlining routine tasks like software patching and database backups.
Scalability on Demand: we use it to handle traffic spikes, scaling both vertically and horizontally.
Database Engine Compatibility: It works amazingly with multiple database engines used by different departments within our organization including MySQL, PostgreSQL, SQL Server, and Oracle.
Monitoring: It covers our extensive monitoring and logging, and also has great compatibility with Amazon CloudWatch
Their MergeTree table engine provide impressive performance for data insert in bulk
Not only data insert but also the way MergeTree engine uses Primary Keys to sort the data and perform data skipping based on the granules its also their secret for ridiculous fast queries
Data compression its also great
They provide especial table engines that allow you to read data directly from other sources like S3
Since its written with C++ you have very granular data types and especial ones like enum, LowCardinality and etc, they save you a lot of storage since are stored as integer values
ClickHouse functions besides the ones that respect ANSI Standards are also awesome and useful
It is a little difficult to configure and connect to an RDS instance. The integration with ECS can be made more seamless.
Exploring features within RDS is not very easy and intuitive. Either a human friendly documentation should be added or the User Interface be made intuitive so that people can explore and find features on their own.
There should be tools to analyze cost and minimize it according to the usage.
We do renew our use of Amazon Relational Database Service. We don't have any problems faced with RDS in place. RDS has taken away lot of overhead of hosting database, managing the database and keeping a team just to manage database. Even the backup, security and recovery another overhead that has been taken away by RDS. So, we will keep on using RDS.
I've been using AWS Relational Database Services in several projects in different environments and from the AWS products, maybe this one together to EC2 are my favourite. They deliver what they promise. Reliable, fast, easy and with a fair price (in comparison to commercial products which have obscure license agreements).
I have only had good experiences in working with AWS support. I will admit that my experience comes from the benefit of having a premium tier of support but even working with free-tier accounts I have not had problems getting help with AWS products when needed. And most often, the docs do a pretty good job of explaining how to operate a service so a quick spin through the docs has been useful in solving problems.
Amazon Relational Database Service (RDS) stands out among similar products due to its seamless integration with other AWS services, automated backups, and multi-AZ deployments for high availability. Its support for various database engines, such as MySQL, PostgreSQL, and Oracle, provides flexibility. Additionally, RDS offers managed security features, including encryption and IAM integration, enhancing data protection. The pay-as-you-go pricing model makes it cost-effective. Overall, Amazon RDS excels in ease of use, scalability, and a comprehensive feature set, making it a top choice for organizations seeking a reliable and scalable managed relational database service in the cloud.
ClickHouse outperforms, especially in costs, since its compression/indexing engines are so smart, and even with very low computing power, you can already perform huge analyses of the data.