Amazon SageMaker vs. AWS Batch

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Amazon SageMaker
Score 8.0 out of 10
N/A
Amazon SageMaker enables developers and data scientists to quickly and easily build, train, and deploy machine learning models at any scale. Amazon SageMaker removes all the barriers that typically slow down developers who want to use machine learning.N/A
AWS Batch
Score 6.6 out of 10
N/A
With AWS Batch, users package the code for batch jobs, specify dependencies, and submit batch jobs using the AWS Management Console, CLIs, or SDKs. AWS Batch allows users to specify execution parameters and job dependencies, and facilitates integration with a broad range of popular batch computing workflow engines and languages (e.g., Pegasus WMS, Luigi, Nextflow, Metaflow, Apache Airflow, and AWS Step Functions).N/A
Pricing
Amazon SageMakerAWS Batch
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Amazon SageMakerAWS Batch
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Amazon SageMakerAWS Batch
Features
Amazon SageMakerAWS Batch
Workload Automation
Comparison of Workload Automation features of Product A and Product B
Amazon SageMaker
-
Ratings
AWS Batch
7.3
7 Ratings
14% below category average
Multi-platform scheduling00 Ratings6.06 Ratings
Central monitoring00 Ratings8.06 Ratings
Logging00 Ratings10.06 Ratings
Alerts and notifications00 Ratings5.06 Ratings
Analysis and visualization00 Ratings5.95 Ratings
Application integration00 Ratings8.76 Ratings
Best Alternatives
Amazon SageMakerAWS Batch
Small Businesses
InterSystems IRIS
InterSystems IRIS
Score 7.9 out of 10

No answers on this topic

Medium-sized Companies
InterSystems IRIS
InterSystems IRIS
Score 7.9 out of 10
Apache Airflow
Apache Airflow
Score 8.6 out of 10
Enterprises
InterSystems IRIS
InterSystems IRIS
Score 7.9 out of 10
Control-M
Control-M
Score 9.3 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Amazon SageMakerAWS Batch
Likelihood to Recommend
9.0
(5 ratings)
5.0
(7 ratings)
Usability
-
(0 ratings)
8.0
(1 ratings)
User Testimonials
Amazon SageMakerAWS Batch
Likelihood to Recommend
Amazon AWS
It allows for one-click processes and for things to be auto checked before they are moved through the process but through the system. It also makes training easy. I am able to train users on the basic fundamentals of the tool and how it is used very easily as it is fully managed on its own which is incredible.
Read full review
Amazon AWS
More appropriate if you have a tech group that can use more of the AWS Batch rather than one or 2 things. It works great for me, but there was a huge learning curve the first week of using it. Now, I love it - and I hope to dig deep into other parts not just S3.
Read full review
Pros
Amazon AWS
  • Machine Learning at scale by deploying huge amount of training data
  • Accelerated data processing for faster outputs and learnings
  • Kubernetes integration for containerized deployments
  • Creating API endpoints for use by technical users
Read full review
Amazon AWS
  • Easy to orchestrate and trigger jobs
  • No time limit issues like lambda
  • Multiple Jobs can be run in same single compute and job queue
  • JOb queue can queue up task for parralled or serialization
Read full review
Cons
Amazon AWS
  • It's very good for the hardcore programmer, but a little bit complex for a data scientist or new hire who does not have a strong programming background.
  • Most of the popular library and ML frameworks are there, but we still have to depend on them for new releases.
Read full review
Amazon AWS
  • Jobs monitoring dashboards are not matured
  • Documentation and support is something which can be improved
  • Sometime i faced the slow response or slow in performance i would say
Read full review
Usability
Amazon AWS
No answers on this topic
Amazon AWS
Key advantages include cost-effectiveness through dynamic resource provisioning and the use of spot instances. It auto-scales to meet workload demands, allowing easy job submission via the AWS Management Console or SDKs. It integrates seamlessly with other services like S3 and CloudWatch. It features automatic retries for failed jobs. It allows for a custom computing environment tailored to specific needs
Read full review
Alternatives Considered
Amazon AWS
Amazon SageMaker took the heavy lifting out of building and creating models. It allowed for our organization to use our current system for integration and essentially added on a feature to help all levels of Data scientists and IT professionals in our department and company as a whole. The training was simple as well.
Read full review
Amazon AWS
We wanted to start everything on a scale & with fewer resources to manage the underlying infrastructure.
Read full review
Return on Investment
Amazon AWS
  • We have been able to deliver data products more rapidly because we spend less time building data pipelines and model servers.
  • We can prototype more rapidly because it is easy to configure notebooks to access AWS resources.
  • For our use-cases, serving models is less expensive with SageMaker than bespoke servers.
Read full review
Amazon AWS
  • Overall over business is able to save the cost
  • Saved our times to improve the existing process
  • Able to integrate with other applications as well, so that is plus point
Read full review
ScreenShots