What users are saying about
5 Ratings
7 Ratings
<a href='https://www.trustradius.com/static/about-trustradius-scoring' target='_blank' rel='nofollow'>trScore algorithm: Learn more.</a>
Score 7.5 out of 101
5 Ratings
<a href='https://www.trustradius.com/static/about-trustradius-scoring' target='_blank' rel='nofollow'>trScore algorithm: Learn more.</a>
Score 9.5 out of 101

Add comparison

Likelihood to Recommend

Amazon SageMaker

Amazon SageMaker is a great tool for developing machine learning models that take more effort than just point-and-click type of analyses. The software works well with the other tools in the Amazon ecosystem, so if you use Amazon Web Services or are thinking about it, SageMaker would be a great addition. SageMaker is great for consumer insights, predictive analytics, and looking for gems of insight in the massive amounts of data we create. SageMaker is less suitable for analysts who do generally "small" data analyses, and "small" data analyses in today's world can be billions of records.
Thomas Young profile photo

H2O

Use H2O.ai whenever you need easy to use tool, when you must be cost efficient (you can not charge the client extra money for software licenses used), need a tool with lots of algorithms that are normally used in data analytics, or need to work on one machine (it is either not allowed to move data to cloud storage or simply not necessary to connect to Hadoop, etc.). Also, you can call H2O directly from Python which makes analysis more efficient.
Viktor Mulac profile photo

Pros

  • Provides enough freedom for experienced data scientists and also for those who just need things done without going much deeper into building models.
  • Customization and easy to alter and change.
  • If you already are an Amazon user, you do not need to transition over to another software.
No photo available
  • Excellent analytical and prediction tool
  • In the beginning, usage of H20 Flow in Web UI enables quick development and sharing of the analytical model
  • Readily available algorithms, easy to use in your analytical projects
  • Faster than Python scikit learn (in machine learning supervised learning area)
  • It can be accessed (run) from Python, not only JAVA etc.
  • Well documented and suitable for fast training or self studying
  • In the beginning, one can use the clickable Flow interface (WEB UI) and later move to a Python console. There is then no need to click in H20 Flow
  • It can be used as open source
Viktor Mulac profile photo

Cons

  • SageMaker does not allow you to schedule training jobs.
  • SageMaker does not provide a mechanism for easily tracking metrics logged during training.
  • We often fit feature extraction and model pipelines. We can inject the model artifacts into AWS-provided containers, but we cannot inject the feature extractors. We could provide our own container to SageMaker instead, but this is tantamount to serving the model ourselves.
Gavin Hackeling profile photo
  • No weaknesses found yet
  • This is not really a drawback, but rather a warning - the Drivereless AI is not a replacement for a data scientist yet, and will not replace data scientists in the next decade neither. The Driverless AI feature delivers reliable results only if the analyst is sure about the meaning of input data. The data quality is usually a major issue and no tool can detect the meaning of data in the input. Data scientists are also required for business interpretation of the findings. So be careful, and do not rely on this feature without a good understanding of what it really does in each step.
Viktor Mulac profile photo

Alternatives Considered

We have not invested in another machine learning software at this time and so far this has proved very successful with our machine learning teams. As mentioned, I am training these individuals simply on the fundamentals of the software and using it/customizing it for their needs. It has been very easy to do this and has gotten great reviews across the organization so far.
No photo available
Both are open source (though H2O only up to some level). Both comprise of deep learning, but H2O is not focused directly on deep learning, while Tensor Flow has a "laser" focus on deep learning. H2O is also more focused on scalability. H2O should be looked at not as a competitor but rather a complementary tool. The use case is usually not only about the algorithms, but also about the data model and data logistics and accessibility. H2O is more accessible due to its UI. Also, both can be accessed from Python. The community around TensorFlow seems larger than that of H2O.
Viktor Mulac profile photo

Return on Investment

  • We have been able to deliver data products more rapidly because we spend less time building data pipelines and model servers.
  • We can prototype more rapidly because it is easy to configure notebooks to access AWS resources.
  • For our use-cases, serving models is less expensive with SageMaker than bespoke servers.
Gavin Hackeling profile photo
  • By using H2O the analyst can focus on analysis itself, not spend too much time with coding etc.
  • Reuse of algorithms and easy model sharing saves time and money
  • An easy learning curve assures low training costs
  • By moving to a paid version, even the Driverless AI, you will still need data scientists and analysts, but maybe not so many!
Viktor Mulac profile photo

Pricing Details

Amazon SageMaker

General
Free Trial
Free/Freemium Version
Premium Consulting/Integration Services
Entry-level set up fee?
No
Additional Pricing Details

H2O

General
Free Trial
Free/Freemium Version
Premium Consulting/Integration Services
Entry-level set up fee?
No
Additional Pricing Details