Amazon SageMaker enables developers and data scientists to quickly and easily build, train, and deploy machine learning models at any scale. Amazon SageMaker removes all the barriers that typically slow down developers who want to use machine learning.
N/A
H2O.ai
Score 6.7 out of 10
N/A
An open-source end-to-end GenAI platform for air-gapped, on-premises or cloud VPC deployments. Users can Query and summarize documents or just chat with local private GPT LLMs using h2oGPT, an Apache V2 open-source project. And the commercially available Enterprise h2oGPTe provides information retrieval on internal data, privately hosts LLMs, and secures data.
It allows for one-click processes and for things to be auto checked before they are moved through the process but through the system. It also makes training easy. I am able to train users on the basic fundamentals of the tool and how it is used very easily as it is fully managed on its own which is incredible.
Most suited if in little time you wanted to build and train a model. Then, H2O makes life very simple. It has support with R, Python and Java, so no programming dependency is required to use it. It's very simple to use. If you want to modify or tweak your ML algorithm then H2O is not suitable. You can't develop a model from scratch.
It's very good for the hardcore programmer, but a little bit complex for a data scientist or new hire who does not have a strong programming background.
Most of the popular library and ML frameworks are there, but we still have to depend on them for new releases.
Amazon SageMaker took the heavy lifting out of building and creating models. It allowed for our organization to use our current system for integration and essentially added on a feature to help all levels of Data scientists and IT professionals in our department and company as a whole. The training was simple as well.
Both are open source (though H2O only up to some level). Both comprise of deep learning, but H2O is not focused directly on deep learning, while Tensor Flow has a "laser" focus on deep learning. H2O is also more focused on scalability. H2O should be looked at not as a competitor but rather a complementary tool. The use case is usually not only about the algorithms, but also about the data model and data logistics and accessibility. H2O is more accessible due to its UI. Also, both can be accessed from Python. The community around TensorFlow seems larger than that of H2O.
Positive impact: saving in infrastructure expenses - compared to other bulky tools this costs a fraction
Positive impact: ability to get quick fixes from H2O when problems arise - compared to waiting for several months/years for new releases from other vendors
Positive impact: Access to H2O core team and able to get features that are needed for our business quickly added to the core H2O product