What users are saying about

H2O

5 Ratings

Amazon SageMaker

6 Ratings
<a href='https://www.trustradius.com/static/about-trustradius-scoring' target='_blank' rel='nofollow'>trScore algorithm: Learn more.</a>
Score 7.4 out of 101

H2O

5 Ratings
<a href='https://www.trustradius.com/static/about-trustradius-scoring' target='_blank' rel='nofollow'>trScore algorithm: Learn more.</a>
Score 9.4 out of 101

Add comparison

Likelihood to Recommend

Amazon SageMaker

It allows for one-click processes and for things to be auto checked before they are moved through the process but through the system. It also makes training easy. I am able to train users on the basic fundamentals of the tool and how it is used very easily as it is fully managed on its own which is incredible.
No photo available

H2O

Use H2O.ai whenever you need easy to use tool, when you must be cost efficient (you can not charge the client extra money for software licenses used), need a tool with lots of algorithms that are normally used in data analytics, or need to work on one machine (it is either not allowed to move data to cloud storage or simply not necessary to connect to Hadoop, etc.). Also, you can call H2O directly from Python which makes analysis more efficient.
Viktor Mulac profile photo

Pros

  • Provides enough freedom for experienced data scientists and also for those who just need things done without going much deeper into building models.
  • Customization and easy to alter and change.
  • If you already are an Amazon user, you do not need to transition over to another software.
No photo available
  • Excellent analytical and prediction tool
  • In the beginning, usage of H20 Flow in Web UI enables quick development and sharing of the analytical model
  • Readily available algorithms, easy to use in your analytical projects
  • Faster than Python scikit learn (in machine learning supervised learning area)
  • It can be accessed (run) from Python, not only JAVA etc.
  • Well documented and suitable for fast training or self studying
  • In the beginning, one can use the clickable Flow interface (WEB UI) and later move to a Python console. There is then no need to click in H20 Flow
  • It can be used as open source
Viktor Mulac profile photo

Cons

  • I think that although the algorithms are there and you are using one click, there could be more detailed descriptions located in places so that other users are able to easily find the right formula and tools.
  • Mobile friendly options would be a huge plus, even tracking what employees are using this tool for in regards to reporting.
No photo available
  • No weaknesses found yet
  • This is not really a drawback, but rather a warning - the Drivereless AI is not a replacement for a data scientist yet, and will not replace data scientists in the next decade neither. The Driverless AI feature delivers reliable results only if the analyst is sure about the meaning of input data. The data quality is usually a major issue and no tool can detect the meaning of data in the input. Data scientists are also required for business interpretation of the findings. So be careful, and do not rely on this feature without a good understanding of what it really does in each step.
Viktor Mulac profile photo

Alternatives Considered

We have not invested in another machine learning software at this time and so far this has proved very successful with our machine learning teams. As mentioned, I am training these individuals simply on the fundamentals of the software and using it/customizing it for their needs. It has been very easy to do this and has gotten great reviews across the organization so far.
No photo available
Both are open source (though H2O only up to some level). Both comprise of deep learning, but H2O is not focused directly on deep learning, while Tensor Flow has a "laser" focus on deep learning. H2O is also more focused on scalability. H2O should be looked at not as a competitor but rather a complementary tool. The use case is usually not only about the algorithms, but also about the data model and data logistics and accessibility. H2O is more accessible due to its UI. Also, both can be accessed from Python. The community around TensorFlow seems larger than that of H2O.
Viktor Mulac profile photo

Return on Investment

  • We have been able to deliver data products more rapidly because we spend less time building data pipelines and model servers.
  • We can prototype more rapidly because it is easy to configure notebooks to access AWS resources.
  • For our use-cases, serving models is less expensive with SageMaker than bespoke servers.
Gavin Hackeling profile photo
  • By using H2O the analyst can focus on analysis itself, not spend too much time with coding etc.
  • Reuse of algorithms and easy model sharing saves time and money
  • An easy learning curve assures low training costs
  • By moving to a paid version, even the Driverless AI, you will still need data scientists and analysts, but maybe not so many!
Viktor Mulac profile photo

Pricing Details

Amazon SageMaker

General
Free Trial
Free/Freemium Version
Premium Consulting/Integration Services
Entry-level set up fee?
No
Additional Pricing Details

H2O

General
Free Trial
Free/Freemium Version
Premium Consulting/Integration Services
Entry-level set up fee?
No
Additional Pricing Details