Apache CouchDB is an HTTP + JSON document database with Map Reduce views and bi-directional replication. The Couch Replication Protocol is implemented in a variety of projects and products that span computing environments from globally distributed server-clusters, over mobile phones to web browsers.
N/A
Astra DB
Score 8.7 out of 10
N/A
Astra DB from DataStax is a vector database for developers that need to get accurate Generative AI applications into production, fast.
N/A
Pricing
Apache CouchDB
Astra DB
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
CouchDB
Astra DB
Free Trial
No
Yes
Free/Freemium Version
No
Yes
Premium Consulting/Integration Services
No
Yes
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Apache CouchDB
Astra DB
Features
Apache CouchDB
Astra DB
NoSQL Databases
Comparison of NoSQL Databases features of Product A and Product B
Apache CouchDB
7.9
2 Ratings
11% below category average
Astra DB
-
Ratings
Performance
8.02 Ratings
00 Ratings
Availability
8.52 Ratings
00 Ratings
Concurrency
8.52 Ratings
00 Ratings
Security
6.02 Ratings
00 Ratings
Scalability
8.02 Ratings
00 Ratings
Data model flexibility
7.02 Ratings
00 Ratings
Deployment model flexibility
9.02 Ratings
00 Ratings
Vector Database
Comparison of Vector Database features of Product A and Product B
Great for REST API development, if you want a small, fast server that will send and receive JSON structures, CouchDB is hard to beat. Not great for enterprise-level relational database querying (no kidding). While by definition, document-oriented databases are not relational, porting or migrating from relational, and using CouchDB as a backend is probably not a wise move as it's reliable, but It may not always be highly available.
We've been super happy with Astra DB. It's been extremely well-suited for our vector search needs as described in previous responses. With Astra DB’s high-performance vector search, Maester’s AI dynamically optimizes responses in real-time, adapting to new user interactions without requiring costly retraining cycles.
It can replicate and sync with web browsers via PouchDB. This lets you keep a synced copy of your database on the client-side, which offers much faster data access than continuous HTTP requests would allow, and enables offline usage.
Simple Map/Reduce support. The M/R system lets you process terabytes of documents in parallel, save the results, and only need to reprocess documents that have changed on subsequent updates. While not as powerful as Hadoop, it is an easy to use query system that's hard to screw up.
Sharding and Clustering support. As of CouchDB 2.0, it supports clustering and sharding of documents between instances without needing a load balancer to determine where requests should go.
Master to Master replication lets you clone, continuously backup, and listen for changes through the replication protocol, even over unreliable WAN links.
We need to be able to process a lot of data (our biggest clients process hundreds of milions of transactions every month). However, it is not only the amount of data, it is also an unpredictable patterns with spikes occuring at different points of time - something athat Astra is great at.
Our processing needs to be extremaly fast. Some of our clients use our enrichment in a synchronous way, meaning that any delay in processing is holding up the whole transaction lifecycle and can have a major impact on the client. Astra is very fast.
A close collaboration with GCP makes our life very easy. All of our technology sits in Google Cloud, so having Astra in there makes it a no-brainer solution for us.
The support team sometimes requires the escalate button pressed on tickets, to get timely responses. I will say, once the ticket is escalated, action is taken.
They require better documentation on the migration of data. The three primary methods for migrating large data volumes are bulk, Cassandra Data Migrator, and ZDM (Zero Downtime Migration Utility). Over time I have become very familiar will all three of these methods; however, through working with the Services team and the support team, it seemed like we were breaking new ground. I feel if the utilities were better documented and included some examples and/or use cases from large data migrations; this process would have been easier. One lesson learned is you likely need to migrate your application servers to the same cloud provider you host Astra on; otherwise, the latency is too large for latency-sensitive applications.
Because our current solution S3 is working great and CouchDB was a nightmare. The worst is that at first, it seemed fine until we filled it with tons of data and then started to create views and actually delete.
Couchdb is very simple to use and the features are also reduced but well implemented. In order to use it the way its designed, the ui is adequate and easy. Of course, there are some other task that can't be performed through the admin ui but the minimalistic design allows you to use external libraries to develop custom scripts
Their response time is fast, in case you do not contact them during business hours, they give a very good follow-up to your case. They also facilitate video calls if necessary for debugging.
it support is minimal also hw requirements. Also for development, we can have databases replicated everywhere and the replication is automagical. once you set up the security and the rules for replication, you are ready to go. The absence of a model let you build your app the way you want it
Graph, search, analytics, administration, developer tooling, and monitoring are all incorporated into a single platform by Astra DB. Mongo Db is a self-managed infrastructure. Astra DB has Wide column store and Mongo DB has Document store. The best thing is that Astra DB operates on Java while Mongo DB operates on C++
We are well aware of the Cassandra architecture and familiar with the open source tooling that Datastax provides the industry (K8sSandra / Stargate) to scale Cassandra on Kubernetes.
Having prior knowledge of Cassandra / Kubernetes means we know that under the hood Astra is built on infinitely scalable technologies. We trust that the foundations that Astra is built on will scale so we know Astra will scale.