What users are saying about
6 Ratings
18 Ratings
6 Ratings
<a href='https://www.trustradius.com/static/about-trustradius-scoring' target='_blank' rel='nofollow'>trScore algorithm: Learn more.</a>
Score 8.3 out of 101
18 Ratings
<a href='https://www.trustradius.com/static/about-trustradius-scoring' target='_blank' rel='nofollow'>trScore algorithm: Learn more.</a>
Score 7.4 out of 101

Likelihood to Recommend

Apache Flume

Apache Flume is well suited in small batch and near real time processing projects, taking data from one point to another with local processing (I mean not external enrichment).
Filtering, transforming and multiple push destinations are common grounds for Flume.
It is not so nice to use if your data needs external enrichment (taking data from external databases or web services), as transactions and (micro)batches may lead to reprocessing and it relies upon the application to avoid duplicates.
Juan Francisco Tavira profile photo

Apache Pig

Apache Pig is well suited as part of an ongoing data pipeline where there is already a team of engineers in place that are familiar with the technology since at this point I would consider it relatively depreciated since there are more suitable technologies that have more robust and flexible APIs with the added benefit of being easier to learn and apply. For ad-hoc needs, I would recommend Hive or Spark-SQL if a SQL-esque language makes sense otherwise to make use of Spark + a Notebook technology such as Apache Zeppelin. For production data pipelines I would recommend Apache Spark over Apache Pig for its performance, ease of use, and its libraries.
No photo available

Pros

Apache Flume

  • Multiple sources of data (sources) and destinations (sinks) that allows you to move data form and to any relevant data storage
  • It is very easy to setup and run
  • Very open to personalization, you can create filters, enrichment, new sources and destinations
Juan Francisco Tavira profile photo

Apache Pig

  • Apache pig DSL provides a better alternative to Java map reduce code and the instruction set is very easy to learn and master.
  • It has many advanced features built-in such as joins, secondary sort, many optimizations, predicate push-down, etc.
  • When Hive was not very advanced (extremely slow) few years ago, pig has always been the go to solution. Now with Spark and Hive (after significant updates), the need to learn apache pig may be questionable.
No photo available

Cons

Apache Flume

  • Apache Flume develops new functionality at a slower pace than other OpenSource projects, it is well behing Kafka and has some compatibiliy issues with latest releases
  • It lack HA or FT, it relies on third party management software like Hortonworks or Cloudera
Juan Francisco Tavira profile photo

Apache Pig

  • Improve Spark support and compatibility
  • Spark and Hive are already being used main-stream, both of them have an instruction set that is easier to learn and master in a matter of days. While apache pig used to be a great alternative to writing java map reduce, Hive after significant updates is now either equal or better than pig.
No photo available

Usability

Apache Flume

No score
No answers yet
No answers on this topic

Apache Pig

Apache Pig 10.0
Based on 1 answer
It is quick, fast and easy to implement Apache Pig which makes is quite popular to be used.
Subhadipto Poddar profile photo

Alternatives Considered

Apache Flume

Apache Flume is a very good solution when your project is not very complex at transformation and enrichment, and good if you have an external management suite like Cloudera, Hortonworks, etc. But it is not a real EAI or ETL like AB Initio or Attunity so
you need to know exactly what you want.On the other hand being an opensource project give Apache a lot of room to personalize thanks to its plug-able architecture and has a very nice performance having a very low CPU and Memory footprint, a single server can do the job on many occasions, as opposed to the multi-server architecture of paid products.
Juan Francisco Tavira profile photo

Apache Pig

I use both Apache Pig and its alternatives like Apache Spark & Apache Hive. Apache Pig was one of the best options in Big Data's initial stages. But now alternatives have taken over the market, rendering Apache Pig behind in the competition. But it is still a better alternative to Map Reduce. It is also a good option for working with unstructured datasets. Moreover, in certain cases, Apache Pig is much faster than Hive & Spark.
Kartik Chavan profile photo

Return on Investment

Apache Flume

  • Flume has simplified a lot many of our ingest procedures, easier to deploy and integrate than a classical EAI, reducing the time to market
  • But opposed to EAIs if the project starts to grow in complexity Apache Flume project may not be as suitable
Juan Francisco Tavira profile photo

Apache Pig

  • Return on Investments are significant considering what it can do with traditional analysis techniques. But, other alternatives like Apache Spark, Hive being more efficient, it is hard to stick to Apache Pig.
  • It can handle large datasets pretty easily compared to SQL. But, again, alternatives are more efficient.
  • While working on unstructured, decentralized dataset, Pig is highly beneficial, as it is not a complete deviation from SQL, but it does not take you in complexity MapReduce as well.
Kartik Chavan profile photo

Pricing Details

Apache Flume

General

Free Trial
Free/Freemium Version
Premium Consulting/Integration Services
Entry-level set up fee?
No
Additional Pricing Details

Apache Pig

General

Free Trial
Free/Freemium Version
Premium Consulting/Integration Services
Entry-level set up fee?
No
Additional Pricing Details

Add comparison