Apache Flume is a product enabling the flow of logs and other data into a Hadoop environment.
N/A
Hortonworks Data Platform
Score 5.0 out of 10
N/A
Hortonworks Data Platform (HDP) is an open source framework for distributed storage and processing of large, multi-source data sets. HDP modernizes IT infrastructure and keeps data secure—in the cloud or on-premises—while helping to drive new revenue streams, improve customer experience, and control costs.
Hortonworks merged with Cloudera in eary 2019.
Apache Flume is a very good solution when your project is not very complex at transformation and enrichment, and good if you have an external management suite like Cloudera, Hortonworks, etc. But it is not a real EAI or ETL like AB Initio or Attunity so
you need to know exactly …
Apache Flume is well suited when the use case is log data ingestion and aggregate only, for example for compliance of configuration management. It is not well suited where you need a general-purpose real-time data ingestion pipeline that can receive log data and other forms of data streams (eg IoT, messages).
I find HDP easy to use and solves most of the problems for people looking to manage their big data. Evaluating the Hortonworks Data Platform is easy as it is free to download and install in your cluster. Single node cluster available as Sandbox is also easy for POCs.
It does a good job of packaging a lot of big data components into bundles and lets you use the ones you are interested in or need. It supports an extensive list of components which lets us solve many problems.
It provides the ability to manage installations and maintenance using Apache Ambari. It helps us in using management packs to install/upgrade components easily. It also helps us add, remove components, add, remove hosts, perform upgrades in a convenient manner. It also provides alerts and notifications and monitors the environment.
What they excel in is packaging open source components that are relevant and are useful to solve and complement each other as well as contribute to enhancing those components. They do a great job in the community to keep on top of what would be useful to users, fixing bugs and working with other companies and individuals to make the platform better.
Since it doesn't come with propriety tools for big data management, additional integration is need (for query handling, search, etc).
It was very straightforward to store clinical data without relations, such as data from sensors of a medical device. But it has limitations when needed to combine the data with other clinical data in structured format (e.g. lab results, diagnosis).
Overall look and feel of front-end management tools (e.g. monitoring) are not good. It is not bad but it doesn't look professional.
Apache Flume is open-source so support is limited. Never the less, it has great documentation and best practices documents from their end-users so it is not hard to use, setup and configure.
Apache Flume is a very good solution when your project is not very complex at transformation and enrichment, and good if you have an external management suite like Cloudera, Hortonworks, etc. But it is not a real EAI or ETL like AB Initio or Attunity so you need to know exactly what you want. On the other hand being an opensource project give Apache a lot of room to personalize thanks to its plug-able architecture and has a very nice performance having a very low CPU and Memory footprint, a single server can do the job on many occasions, as opposed to the multi-server architecture of paid products.
We chose [Hortonworks Data Platform] because it's free and because [it] was an IBM partner, suggested as big data platform after biginsights platform.
You can install in more physical computer without high specs, then you can use it in order to learn how to deploy, configure a complete big data cluster.
We installed also in a cloud infrastructure of 5 virtual machine