Likelihood to Recommend Software work execution is on a large scale, it is good to use for new projects or organizational changes, data lineage mapping has always been dubious but this one has had good results. You can store and synchronize data from different departments, the storage process can be manual but it is best automated.
Read full review Elasticsearch is a really scalable solution that can fit a lot of needs, but the bigger and/or those needs become, the more understanding & infrastructure you will need for your instance to be running correctly. Elasticsearch is not problem-free - you can get yourself in a lot of trouble if you are not following good practices and/or if are not managing the cluster correctly. Licensing is a big decision point here as Elasticsearch is a middleware component - be sure to read the licensing agreement of the version you want to try before you commit to it. Same goes for long-term support - be sure to keep yourself in the know for this aspect you may end up stuck with an unpatched version for years.
Read full review Pros Apache Hive allows use to write expressive solutions to complex problems thanks to its SQL-like syntax. Relatively easy to set up and start using. Very little ramp-up to start using the actual product, documentation is very thorough, there is an active community, and the code base is constantly being improved. Read full review As I mentioned before, Elasticsearch's flexible data model is unparalleled. You can nest fields as deeply as you want, have as many fields as you want, but whatever you want in those fields (as long as it stays the same type), and all of it will be searchable and you don't need to even declare a schema beforehand! Elastic, the company behind Elasticsearch, is super strong financially and they have a great team of devs and product managers working on Elasticsearch. When I first started using ES 3 years ago, I was 90% impressed and knew it would be a good fit. 3 years later, I am 200% impressed and blown away by how far it has come and gotten even better. If there are features that are missing or you don't think it's fast enough right now, I bet it'll be suitable next year because the team behind it is so dang fast! Elasticsearch is really, really stable. It takes a lot to bring down a cluster. It's self-balancing algorithms, leader-election system, self-healing properties are state of the art. We've never seen network failures or hard-drive corruption or CPU bugs bring down an ES cluster. Read full review Cons Some queries, particularly complex joins, are still quite slow and can take hours Previous jobs and queries are not stored sometimes Switching to Impala can sometimes be time-consuming (i.e. the system hangs, or is slow to respond). Sometimes, directories and tables don't load properly which causes confusion Read full review Joining data requires duplicate de-normalized documents that make parent child relationships. It is hard and requires a lot of synchronizations Tracking errors in the data in the logs can be hard, and sometimes recurring errors blow up the error logs Schema changes require complete reindexing of an index Read full review Likelihood to Renew Since I do not know the second data warehouse solution that integrate with HDFS as well as Hive.
Read full review We're pretty heavily invested in ElasticSearch at this point, and there aren't any obvious negatives that would make us reconsider this decision.
Read full review Usability Hive is a very good big data analysis and ad-hoc query platform, which supports scaling also. The BI processes can be easily integrated with Hadoop via the Hive. It can deal with a much larger data set that traditional RDBMS can not. It is a "must-have" component of the big data domain.
Read full review To get started with Elasticsearch, you don't have to get very involved in configuring what really is an incredibly complex system under the hood. You simply install the package, run the service, and you're immediately able to begin using it. You don't need to learn any sort of query language to add data to Elasticsearch or perform some basic searching. If you're used to any sort of RESTful API, getting started with Elasticsearch is a breeze. If you've never interacted with a RESTful API directly, the journey may be a little more bumpy. Overall, though, it's incredibly simple to use for what it's doing under the covers.
Read full review Support Rating Apache Hive is a FOSS project and its open source. We need not definitely comment on anything about the support of open source and its developer community. But, it has got tremendous developer support, awesome documentation. I would justify the fact that much support can be gathered from the community backup.
Read full review We've only used it as an opensource tooling. We did not purchase any additional support to roll out the elasticsearch software. When rolling out the application on our platform we've used the documentation which was available online. During our test phases we did not experience any bugs or issues so we did not rely on support at all.
Read full review Implementation Rating Do not mix data and master roles. Dedicate at least 3 nodes just for Master
Read full review Alternatives Considered Besides Hive, I have used
Google BigQuery , which is costly but have very high computation speed. Amazon Redshift is the another product, I used in my recent organisation. Both Redshift and BigQuery are managed solution whereas Hive needs to be managed
Read full review As far as we are concerned, Elasticsearch is the gold standard and we have barely evaluated any alternatives. You could consider it an alternative to a relational or NoSQL database, so in cases where those suffice, you don't need Elasticsearch. But if you want powerful text-based search capabilities across large data sets, Elasticsearch is the way to go.
Read full review Return on Investment Apache hive is secured and scalable solution that helps in increasing the overall organization productivity. Apache hive can handle and process large amount of data in a sufficient time manner. It simplifies writing SQL queries, hence helping the organization as most companies use SQL for all query jobs. Read full review We have had great luck with implementing Elasticsearch for our search and analytics use cases. While the operational burden is not minimal, operating a cluster of servers, using a custom query language, writing Elasticsearch-specific bulk insert code, the performance and the relative operational ease of Elasticsearch are unparalleled. We've easily saved hundreds of thousands of dollars implementing Elasticsearch vs. RDBMS vs. other no-SQL solutions for our specific set of problems. Read full review ScreenShots