Apache Pig is best suited for ETL-based data processes. It is good in performance in handling and analyzing a large amount of data. it gives faster results than any other similar tool. It is easy to implement and any user with some initial training or some prior SQL knowledge can work on it. Apache Pig is proud to have a large community base globally.
MySQL is best suited for applications on platform like high-traffic content-driven websites, small-scale web apps, data warehouses which regards light analytical workloads. However its less suited for areas like enterprise data warehouse, OLAP cubes, large-scale reporting, applications requiring flexible or semi-structured data like event logging systems, product configurations, dynamic forms.
Learning curve: is big. Newbies will face problems in understanding the platform initially. However, with plenty of online resources, one can easily find solutions to problems and learn on the go.
Backup and restore: MySQL is not very seamless. Although the data is never ruptured or missed, the process involved is not very much user-friendly. Maybe, a new command-line interface for only the backup-restore functionality shall be set up again to make this very important step much easier to perform and maintain.
For teaching Databases and SQL, I would definitely continue to use MySQL. It provides a good, solid foundation to learn about databases. Also to learn about the SQL language and how it works with the creation, insertion, deletion, updating, and manipulation of data, tables, and databases. This SQL language is a foundation and can be used to learn many other database related concepts.
I give MySQL a 9/10 overall because I really like it but I feel like there are a lot of tech people who would hate it if I gave it a 10/10. I've never had any problems with it or reached any of its limitations but I know a few people who have so I can't give it a 10/10 based on those complaints.
We have never contacted MySQL enterprise support team for any issues related to MySQL. This is because we have been using primarily the MySQL Server community edition and have been using the MySQL support forums for any questions and practical guidance that we needed before and during the technical implementations. Overall, the support community has been very helpful and allowed us to make the most out of the community edition.
Apache Pig might help to start things faster at first and it was one of the best tool years back but it lacks important features that are needed in the data engineering world right now. Pig also has a steeper learning curve since it uses a proprietary language compared to Spark which can be coded with Python, Java.
MongoDB has a dynamic schema for how data is stored in 'documents' whereas MySQL is more structured with tables, columns, and rows. MongoDB was built for high availability whereas MySQL can be a challenge when it comes to replication of the data and making everything redundant in the event of a DR or outage.
Higher learning curve than other similar technologies so on-boarding new engineers or change ownership of Apache Pig code tends to be a bit of a headache
Once the language is learned and understood it can be relatively straightforward to write simple Pig scripts so development can go relatively quickly with a skilled team
As distributed technologies grow and improve, overall Apache Pig feels left in the dust and is more legacy code to support than something to actively develop with.