What users are saying about
103 Ratings
4 Ratings
103 Ratings
<a href='https://www.trustradius.com/static/about-trustradius-scoring' target='_blank' rel='nofollow'>trScore algorithm: Learn more.</a>
Score 8.5 out of 101
4 Ratings
<a href='https://www.trustradius.com/static/about-trustradius-scoring' target='_blank' rel='nofollow'>trScore algorithm: Learn more.</a>
Score 8.7 out of 101

Add comparison

Likelihood to Recommend

Apache Spark

The software appears to run more efficiently than other big data tools, such as Hadoop. Given that, Apache Spark is well-suited for querying and trying to make sense of very, very large data sets. The software offers many advanced machine learning and econometrics tools, although these tools are used only partially because very large data sets require too much time when the data sets get too large. The software is not well-suited for projects that are not big data in size. The graphics and analytical output are subpar compared to other tools.
Thomas Young profile photo

Apache Sqoop

Sqoop is great for sending data between a JDBC compliant database and a Hadoop environment. Sqoop is built for those who need a few simple CLI options to import a selection of database tables into Hadoop, do large dataset analysis that could not commonly be done with that database system due to resource constraints, then export the results back into that database (or another). Sqoop falls short when there needs to be some extra, customized processing between database extract, and Hadoop loading, in which case Apache Spark's JDBC utilities might be preferred
Jordan Moore profile photo

Pros

  • Apache Spark makes processing very large data sets possible. It handles these data sets in a fairly quick manner.
  • Apache Spark does a fairly good job implementing machine learning models for larger data sets.
  • Apache Spark seems to be a rapidly advancing software, with the new features making the software ever more straight-forward to use.
Thomas Young profile photo
  • Provides generalized JDBC extensions to migrate data between most database systems
  • Generates Java classes upon reading database records for use in other code utilizing Hadoop's client libraries
  • Allows for both import and export features
Jordan Moore profile photo

Cons

  • Apache Spark requires some advanced ability to understand and structure the modeling of big data. The software is not user-friendly.
  • The graphics produced by Apache Spark are by no means world-class. They sometimes appear high-schoolish.
  • Apache Spark takes an enormous amount of time to crunch through multiple nodes across very large data sets. Apache Spark could improve this by offering the software in a more interactive programming environment.
Thomas Young profile photo
  • Sqoop2 development seems to have stalled. I have set it up outside of a Cloudera CDH installation, and I actually prefer it's "Sqoop Server" model better than just the CLI client version that is Sqoop1. This works especially well in a microservices environment, where there would be only one place to maintain the JDBC drivers to use for Sqoop.
Jordan Moore profile photo

Alternatives Considered

All the above systems work quite well on big data transformations whereas Spark really shines with its bigger API support and its ability to read from and write to multiple data sources. Using Spark one can easily switch between declarative versus imperative versus functional type programming easily based on the situation. Also it doesn't need special data ingestion or indexing pre-processing like Presto. Combining it with Jupyter Notebooks (https://github.com/jupyter-incubator/sparkmagic), one can develop the Spark code in an interactive manner in Scala or Python
Nitin Pasumarthy profile photo
  • Sqoop comes preinstalled on the major Hadoop vendor distributions as the recommended product to import data from relational databases. The ability to extend it with additional JDBC drivers makes it very flexible for the environment it is installed within.
  • Spark also has a useful JDBC reader, and can manipulate data in more ways than Sqoop, and also upload to many other systems than just Hadoop.
  • Kafka Connect JDBC is more for streaming database updates using tools such as Oracle GoldenGate or Debezium.
  • Streamsets and Apache NiFi both provide a more "flow based programming" approach to graphically laying out connectors between various systems, including JDBC and Hadoop.
Jordan Moore profile photo

Return on Investment

  • Switching from PIG Latin to Apache Spark sped up the overall development time and also the resource utilization has gone up.
  • Our offline jobs also run faster than traditional map-reduce like systems.
  • Integrating with Jupyter like notebook environments, the development experience becomes more pleasant and we can iterate much faster.
Nitin Pasumarthy profile photo
  • When combined with Cloudera's HUE, it can enable non-technical users to easily import relational data into Hadoop.
  • Being able to manipulate large datasets in Hadoop, and them load them into a type of "materialized view" in an external database system has yielded great insights into the Hadoop datalake without continuously running large batch jobs.
  • Sqoop isn't very user-friendly for those uncomfortable with a CLI.
Jordan Moore profile photo

Pricing Details

Apache Spark

General
Free Trial
Free/Freemium Version
Premium Consulting/Integration Services
Entry-level set up fee?
No
Additional Pricing Details

Apache Sqoop

General
Free Trial
Free/Freemium Version
Premium Consulting/Integration Services
Entry-level set up fee?
No
Additional Pricing Details