Likelihood to Recommend Well suited: To most of the local run of datasets and non-prod systems - scalability is not a problem at all. Including data from multiple types of data sources is an added advantage. MLlib is a decently nice built-in library that can be used for most of the ML tasks. Less appropriate: We had to work on a RecSys where the music dataset that we used was around 300+Gb in size. We faced memory-based issues. Few times we also got memory errors. Also the MLlib library does not have support for advanced analytics and deep-learning frameworks support. Understanding the internals of the working of Apache Spark for beginners is highly not possible.
Read full review Sqoop is great for sending data between a JDBC compliant database and a
Hadoop environment. Sqoop is built for those who need a few simple CLI options to import a selection of database tables into
Hadoop , do large dataset analysis that could not commonly be done with that database system due to resource constraints, then export the results back into that database (or another). Sqoop falls short when there needs to be some extra, customized processing between database extract, and
Hadoop loading, in which case
Apache Spark 's JDBC utilities might be preferred
Read full review Pros Rich APIs for data transformation making for very each to transform and prepare data in a distributed environment without worrying about memory issues Faster in execution times compare to Hadoop and PIG Latin Easy SQL interface to the same data set for people who are comfortable to explore data in a declarative manner Interoperability between SQL and Scala / Python style of munging data Read full review Provides generalized JDBC extensions to migrate data between most database systems Generates Java classes upon reading database records for use in other code utilizing Hadoop's client libraries Allows for both import and export features Read full review Cons Memory management. Very weak on that. PySpark not as robust as scala with spark. spark master HA is needed. Not as HA as it should be. Locality should not be a necessity, but does help improvement. But would prefer no locality Read full review Sqoop2 development seems to have stalled. I have set it up outside of a Cloudera CDH installation, and I actually prefer it's "Sqoop Server" model better than just the CLI client version that is Sqoop1. This works especially well in a microservices environment, where there would be only one place to maintain the JDBC drivers to use for Sqoop. Read full review Likelihood to Renew Capacity of computing data in cluster and fast speed.
Steven Li Senior Software Developer (Consultant)
Read full review Usability The only thing I dislike about spark's usability is the learning curve, there are many actions and transformations, however, its wide-range of uses for ETL processing, facility to integrate and it's multi-language support make this library a powerhouse for your data science solutions. It has especially aided us with its lightning-fast processing times.
Read full review Support Rating 1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Read full review Alternatives Considered Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the
Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
Read full review Sqoop comes preinstalled on the major Hadoop vendor distributions as the recommended product to import data from relational databases. The ability to extend it with additional JDBC drivers makes it very flexible for the environment it is installed within. Spark also has a useful JDBC reader, and can manipulate data in more ways than Sqoop, and also upload to many other systems than just Hadoop . Kafka Connect JDBC is more for streaming database updates using tools such as Oracle GoldenGate or Debezium. Streamsets and Apache NiFi both provide a more "flow based programming" approach to graphically laying out connectors between various systems, including JDBC and Hadoop . Read full review Return on Investment Business leaders are able to take data driven decisions Business users are able access to data in near real time now . Before using spark, they had to wait for at least 24 hours for data to be available Business is able come up with new product ideas Read full review When combined with Cloudera's HUE, it can enable non-technical users to easily import relational data into Hadoop. Being able to manipulate large datasets in Hadoop, and them load them into a type of "materialized view" in an external database system has yielded great insights into the Hadoop datalake without continuously running large batch jobs. Sqoop isn't very user-friendly for those uncomfortable with a CLI. Read full review ScreenShots