Spark has primarily replaced my use of writing pure Hadoop MapReduce or Apache Pig jobs for processing data. I like the fact that I can alternate between the main programming languages that I know - Java and Python - and use those to learn the Scala API. Spark also can be …
Sqoop comes preinstalled on the major Hadoop vendor distributions as the recommended product to import data from relational databases. The ability to extend it with additional JDBC drivers makes it very flexible for the environment it is installed within.
The software appears to run more efficiently than other big data tools, such as Hadoop. Given that, Apache Spark is well-suited for querying and trying to make sense of very, very large data sets. The software offers many advanced machine learning and econometrics tools, although these tools are used only partially because very large data sets require too much time when the data sets get too large. The software is not well-suited for projects that are not big data in size. The graphics and analytical output are subpar compared to other tools.
Sqoop is great for sending data between a JDBC compliant database and a Hadoop environment. Sqoop is built for those who need a few simple CLI options to import a selection of database tables into Hadoop, do large dataset analysis that could not commonly be done with that database system due to resource constraints, then export the results back into that database (or another). Sqoop falls short when there needs to be some extra, customized processing between database extract, and Hadoop loading, in which case Apache Spark's JDBC utilities might be preferred
Sqoop2 development seems to have stalled. I have set it up outside of a Cloudera CDH installation, and I actually prefer it's "Sqoop Server" model better than just the CLI client version that is Sqoop1. This works especially well in a microservices environment, where there would be only one place to maintain the JDBC drivers to use for Sqoop.
The only thing I dislike about spark's usability is the learning curve, there are many actions and transformations, however, its wide-range of uses for ETL processing, facility to integrate and it's multi-language support make this library a powerhouse for your data science solutions. It has especially aided us with its lightning-fast processing times.
1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
Sqoop comes preinstalled on the major Hadoop vendor distributions as the recommended product to import data from relational databases. The ability to extend it with additional JDBC drivers makes it very flexible for the environment it is installed within.
Spark also has a useful JDBC reader, and can manipulate data in more ways than Sqoop, and also upload to many other systems than just Hadoop.
Kafka Connect JDBC is more for streaming database updates using tools such as Oracle GoldenGate or Debezium.
Streamsets and Apache NiFi both provide a more "flow based programming" approach to graphically laying out connectors between various systems, including JDBC and Hadoop.
When combined with Cloudera's HUE, it can enable non-technical users to easily import relational data into Hadoop.
Being able to manipulate large datasets in Hadoop, and them load them into a type of "materialized view" in an external database system has yielded great insights into the Hadoop datalake without continuously running large batch jobs.
Sqoop isn't very user-friendly for those uncomfortable with a CLI.