We used Surprise Kit for one of the other research works. It is more fine-tuned to Recommendation systems and their algorithms. Apache Spark has MLlib for majority of ML problems. Where as software like Surprse Kit - it suitable for a specific task of Recommendations only.
Apache Spark is a fast-processing in-memory computing framework. It is 10 times faster than Apache Hadoop. Earlier we were using Apache Hadoop for processing data on the disk but now we are shifted to Apache Spark because of its in-memory computation capability. Also in SAP …
Other teams used to work on Apache Hadoop but our team started with Apache Spark directly.
Verified User
Engineer
Chose Apache Spark
Apache Spark has much more better performance and features if we compare with Hive or map/reduce kind of solutions. Spark has many other features for machine learning, streaming.
There are a few alternatives that can do the same transformation and aggregation like Apache Spark can do but most of them are not able to perform parallel computation. For example, pandas is a really good tool to do that but not parallelized; However, there are some tools that …
1. Apache Spark is almost 100 % faster than Hadoop. 2. Apache Spark is more stable than Amazon EMR. 3. The end to end distributed machine library is more robust in Apache Spark.
Verified User
Executive
Chose Apache Spark
Databricks uses Spark as a foundation, and is also a great platform. It does bring several add-ons, which we did not feel needed by the time we evaluated - and haven't needed since then. One interesting plus in our opinion was the engineering support, which is great depending …
It is easy to learn, read and to maintain. It brings the best of the Ruby on Rails framework from Java that helps to create a web service so easily. Communication is one of the most distinctive features of Apache Spark compared to alternative products. You are able to …
We evaluated SAS alongside with Apache Spark but during the course of proof of concept found that Apache Spark was able to support the hadoop eco-system and hadoop file system much better. It was much faster at that time while having the ability to process data quickly for the …
Consultor Tecnico - Java Developer and Php Developer.
Chose Apache Spark
I prefer Apache Spark compared to Hadoop, since in my experience Spark has more usability and comes equipped with simple APIs for Scala, Python, Java and Spark SQL, as well as provides feedback in REPL format on the commands. At the same time, Apache Spark seems to have the …
All the above systems work quite well on big data transformations whereas Spark really shines with its bigger API support and its ability to read from and write to multiple data sources. Using Spark one can easily switch between declarative versus imperative versus functional …
Even with Python, MapReduce is lengthy coding. Combination of Python with Apache Spark will not only shorten the code, but it will effectively increase the speed of algorithms. Occasionally, I use MapReduce, but Apache Spark will replace MapReduce very soon. It has many …
vs MapRedce, it was faster and easier to manage. Especially for Machine Learning, where MapReduce is lacking. Also Apache Storm was slower and didn't scale as much as Spark does. Spark elasticity was easier to apply compared to storm and MapReduce. managing resources for …
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and …
Apache Pig and Apache Hive provide most of the things spark provide but apache spark has more features like actions and transformations which are easy to code. Spark uses optimization technique as we can select driver program and manipulate DAG (Directed Acyclic Graph) Python …
There are a few newer frameworks for general processing like Flink, Beam, frameworks for streaming like Samza and Storm, and traditional Map-Reduce. I think Spark is at a sweet spot where its clearly better than Map-Reduce for many workflows yet has gotten a good amount of …
Spark has primarily replaced my use of writing pure Hadoop MapReduce or Apache Pig jobs for processing data. I like the fact that I can alternate between the main programming languages that I know - Java and Python - and use those to learn the Scala API. Spark also can be …