Apache Spark vs. Kognitio

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Apache Spark
Score 8.8 out of 10
N/A
N/AN/A
Kognitio
Score 9.1 out of 10
N/A
WX2 is the data and analytics focused data warehouse appliance solution from UK company Kognitio.N/A
Pricing
Apache SparkKognitio
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache SparkKognitio
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details——
More Pricing Information
Best Alternatives
Apache SparkKognitio
Small Businesses

No answers on this topic

No answers on this topic

Medium-sized Companies
Cloudera Manager
Cloudera Manager
Score 9.9 out of 10
Cloudera Manager
Cloudera Manager
Score 9.9 out of 10
Enterprises
IBM Analytics Engine
IBM Analytics Engine
Score 8.6 out of 10
IBM Analytics Engine
IBM Analytics Engine
Score 8.6 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache SparkKognitio
Likelihood to Recommend
10.0
(23 ratings)
9.0
(2 ratings)
Likelihood to Renew
10.0
(1 ratings)
-
(0 ratings)
Usability
10.0
(3 ratings)
-
(0 ratings)
Support Rating
8.7
(4 ratings)
-
(0 ratings)
User Testimonials
Apache SparkKognitio
Likelihood to Recommend
Apache
Well suited: To most of the local run of datasets and non-prod systems - scalability is not a problem at all. Including data from multiple types of data sources is an added advantage. MLlib is a decently nice built-in library that can be used for most of the ML tasks. Less appropriate: We had to work on a RecSys where the music dataset that we used was around 300+Gb in size. We faced memory-based issues. Few times we also got memory errors. Also the MLlib library does not have support for advanced analytics and deep-learning frameworks support. Understanding the internals of the working of Apache Spark for beginners is highly not possible.
Read full review
Kognitio
What you have are different strategies for data encoding, which makes the process quite flexible, it is perfectly done so that a joint and collaborative work can be carried out, this information analyzed in large quantities, is extremely vital for the company, by giving it the correct and timely reading
Read full review
Pros
Apache
  • Rich APIs for data transformation making for very each to transform and prepare data in a distributed environment without worrying about memory issues
  • Faster in execution times compare to Hadoop and PIG Latin
  • Easy SQL interface to the same data set for people who are comfortable to explore data in a declarative manner
  • Interoperability between SQL and Scala / Python style of munging data
Read full review
Kognitio
  • Ultra fast query results.
  • IN Memory Database.
  • Easy integration to reporting services.
Read full review
Cons
Apache
  • Memory management. Very weak on that.
  • PySpark not as robust as scala with spark.
  • spark master HA is needed. Not as HA as it should be.
  • Locality should not be a necessity, but does help improvement. But would prefer no locality
Read full review
Kognitio
  • Problems Could Be Encountered is particularly pronounced in more complex analyses.
  • Categorical variables are often not precise enough
Read full review
Likelihood to Renew
Apache
Capacity of computing data in cluster and fast speed.
Read full review
Kognitio
No answers on this topic
Usability
Apache
The only thing I dislike about spark's usability is the learning curve, there are many actions and transformations, however, its wide-range of uses for ETL processing, facility to integrate and it's multi-language support make this library a powerhouse for your data science solutions. It has especially aided us with its lightning-fast processing times.
Read full review
Kognitio
No answers on this topic
Support Rating
Apache
1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Read full review
Kognitio
No answers on this topic
Alternatives Considered
Apache
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
Read full review
Kognitio
We selected Kognitio because of the legacy systems that are still running. Also, we have legacy systems in place that are fit for Kognitio. End-user has good feedback on our side when we started implementing this solution. Current servers are compatible with Kognitio in place.
Read full review
Return on Investment
Apache
  • Business leaders are able to take data driven decisions
  • Business users are able access to data in near real time now . Before using spark, they had to wait for at least 24 hours for data to be available
  • Business is able come up with new product ideas
Read full review
Kognitio
  • The implementation of the formats to integrate the users we have and the program is also good.
  • I also improve the control of aspects related to the work environment
Read full review
ScreenShots