The Appen platform combines human intelligence from over one million people all over the world with models to create training data for ML projects. Appen users can upload data to the Appen platform, and they provide the annotations, judgments, and labels needed to help create ground truth for models.
N/A
Pytorch
Score 9.3 out of 10
N/A
Pytorch is an open source machine learning (ML) framework boasting a rich ecosystem of tools and libraries that extend PyTorch and support development in computer vision, NLP and or that supports other ML goals.
It is well suited for the users and potential employee who are free of any job perspective and need their free time to be utilized. Users can use their free time to be used for submission of interesting tasks.
Whereas the number of tasks are very less and processing time is also very extensive and recruitment takes time more.
They have created Pytorch Lightening on top of Pytorch to make the life of Data Scientists easy so that they can use complex models they need with just a few lines of code, so it's becoming popular. As compared to TensorFlow(Keras), where we can create custom neural networks by just adding layers, it's slightly complicated in Pytorch.
The big advantage of PyTorch is how close it is to the algorithm. Oftentimes, it is easier to read Pytorch code than a given paper directly. I particularly like the object-oriented approach in model definition; it makes things very clean and easy to teach to software engineers.
Appen offers projects mostly related to my native language and also according to my expertise . It offers very interesting projects to be completed , which requires not very expertise and less time to be completed for each task. It is also very convenient to use after selection for the task and also well rewarding against the time consumed for the task completion.
Pytorch is very, very simple compared to TensorFlow. Simple to install, less dependency issues, and very small learning curve. TensorFlow is very much optimised for robust deployment but very complicated to train simple models and play around with the loss functions. It needs a lot of juggling around with the documentation. The research community also prefers PyTorch, so it becomes easy to find solutions to most of the problems. Keras is very simple and good for learning ML / DL. But when going deep into research or building some product that requires a lot of tweaks and experimentation, Keras is not suitable for that. May be good for proving some hypotheses but not good for rigorous experimentation with complex models.