Microsoft's Azure Data Factory is a service built for all data integration needs and skill levels. It is designed to allow the user to easily construct ETL and ELT processes code-free within the intuitive visual environment, or write one's own code. Visually integrate data sources using more than 80 natively built and maintenance-free connectors at no added cost. Focus on data—the serverless integration service does the rest.
N/A
CloverDX
Score 9.0 out of 10
N/A
CloverDX is a rapid, end-to-end data integration solution. The vendor states that businesses choose CloverDX for its usability and intuitive controls, along with its lightweight footprint, flexibility, and processing speed. Achieving true, rapid data integration means much more than just raw data processing power. Rapid refers to an end-to-end process that begins the moment a data-related problem is recognized to the point when the data is in the right place and form to be analyzed and…
N/A
Pricing
Azure Data Factory
CloverDX
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Azure Data Factory
CloverDX
Free Trial
No
Yes
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
Yes
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Azure Data Factory
CloverDX
Features
Azure Data Factory
CloverDX
Data Source Connection
Comparison of Data Source Connection features of Product A and Product B
Azure Data Factory
8.5
10 Ratings
3% above category average
CloverDX
9.0
1 Ratings
9% above category average
Connect to traditional data sources
9.010 Ratings
9.01 Ratings
Connecto to Big Data and NoSQL
8.010 Ratings
00 Ratings
Data Transformations
Comparison of Data Transformations features of Product A and Product B
Azure Data Factory
7.8
10 Ratings
3% below category average
CloverDX
8.5
1 Ratings
6% above category average
Simple transformations
8.710 Ratings
9.01 Ratings
Complex transformations
7.010 Ratings
8.01 Ratings
Data Modeling
Comparison of Data Modeling features of Product A and Product B
Azure Data Factory
6.3
10 Ratings
21% below category average
CloverDX
8.0
1 Ratings
3% above category average
Data model creation
4.57 Ratings
8.01 Ratings
Metadata management
5.58 Ratings
8.01 Ratings
Business rules and workflow
6.010 Ratings
8.01 Ratings
Collaboration
7.09 Ratings
00 Ratings
Testing and debugging
6.310 Ratings
00 Ratings
Data Governance
Comparison of Data Governance features of Product A and Product B
Best scenario is for ETL process. The flexibility and connectivity is outstanding. For our environment, SAP data connectivity with Azure Data Factory offers very limited features compared to SAP Data Sphere. Due to the limited modelling capacity of the tool, we use Databricks for data modelling and cleaning. Usage of multiple tools could have been avoided if adf has modelling capabilities.
CloverDX designer as a standalone is well suited for fairly straightforward transformations of data. If you want to do large scale data integrations, then their server edition adds an extra level of automation and job control.
Granularity of Errors: Sometimes, Azure Data Factory provides error messages that are too generic or vague for us, making it challenging to pinpoint the exact cause of a pipeline failure. Enhanced error messages with more actionable details would greatly assist us as users in debugging their pipelines.
Pipeline Design UI: In my experience, the visual interface for designing pipelines, especially when dealing with complex workflows or numerous activities, can become cluttered. I think a more intuitive and scalable design interface would improve usability. In my opinion, features like zoom, better alignment tools, or grouping capabilities could make managing intricate designs more manageable.
Native Support: While Azure Data Factory does support incremental data loads, in my experience, the setup can be somewhat manual and complex. I think native and more straightforward support for Change Data Capture, especially from popular databases, would simplify the process of capturing and processing only the changed data, making regular data updates more efficient
So far product has performed as expected. We were noticing some performance issues, but they were largely Synapse related. This has led to a shift from Synapse to Databricks. Overall this has delayed our analytic platform. Once databricks becomes fully operational, Azure Data Factory will be critical to our environment and future success.
We have not had need to engage with Microsoft much on Azure Data Factory, but they have been responsive and helpful when needed. This being said, we have not had a major emergency or outage requiring their intervention. The score of seven is a representation that they have done well for now, but have not proved out their support for a significant issue
While CloverDX has an active forum for users to submit questions and assist with answers, their in house support team is incredibly responsive when I've contacted them for assistance. This seems almost at odds with most other software companies who try to save money on tech support by promoting a forum or knowledge base.
Azure Data Factory helps us automate to schedule jobs as per customer demands to make ETL triggers when the need arises. Anyone can define the workflow with the Azure Data Factory UI designer tool and easily test the systems. It helped us automate the same workflow with programming languages like Python or automation tools like ansible. Numerous options for connectivity be it a database or storage account helps us move data transfer to the cloud or on-premise systems.
Work that use to take multiple people 20 to 30 hours a week to complete each has now been fully automated to where only 1 or 2 hours a week for maintenance is required.