Cloudera Data Platform (CDP), launched September 2019, is designed to combine the best of Hortonworks and Cloudera technologies to deliver an enterprise data cloud. CDP includes the Cloudera Data Warehouse and machine learning services as well as a Data Hub service for building custom business applications.
$0.04
per CCU (hourly rate)
TensorFlow
Score 8.0 out of 10
N/A
TensorFlow is an open-source machine learning software library for numerical computation using data flow graphs. It was originally developed by Google.
I have seen that Cloudera Data Platform is well suited for large batch processes. It works really well for our indication analyses that are performed by the actuaries. I feel that rapid streaming operations may be a situation where additional technology would be needed to provide for a robust solution.
TensorFlow is great for most deep learning purposes. This is especially true in two domains: 1. Computer vision: image classification, object detection and image generation via generative adversarial networks 2. Natural language processing: text classification and generation. The good community support often means that a lot of off-the-shelf models can be used to prove a concept or test an idea quickly. That, and Google's promotion of Colab means that ideas can be shared quite freely. Training, visualizing and debugging models is very easy in TensorFlow, compared to other platforms (especially the good old Caffe days). In terms of productionizing, it's a bit of a mixed bag. In our case, most of our feature building is performed via Apache Spark. This means having to convert Parquet (columnar optimized) files to a TensorFlow friendly format i.e., protobufs. The lack of good JVM bindings mean that our projects end up being a mix of Python and Scala. This makes it hard to reuse some of the tooling and support we wrote in Scala. This is where MXNet shines better (though its Scala API could do with more work).
Theano is perhaps a bit faster and eats up less memory than TensorFlow on a given GPU, perhaps due to element-wise ops. Tensorflow wins for multi-GPU and “compilation” time.
We have utilized Cloudera support quite frequently and are very satisfied with the capability and responsiveness of that team. Often, the new features delivered with the platform give us an opportunity to mature the way we're doing things, and the support team have been valuable in developing those new patterns.
Community support for TensorFlow is great. There's a huge community that truly loves the platform and there are many examples of development in TensorFlow. Often, when a new good technique is published, there will be a TensorFlow implementation not long after. This makes it quick to ally the latest techniques from academia straight to production-grade systems. Tooling around TensorFlow is also good. TensorBoard has been such a useful tool, I can't imagine how hard it would be to debug a deep neural network gone wrong without TensorBoard.
IBM's offering of the Cloud Pak for Data has been a moving target and difficult to compare to Cloudera Data Platform. We have implemented our solution on Amazon Web Services, which appears to be supported by IBM at this point, but the migration would be very expensive for us to endeavor.
Keras is built on top of TensorFlow, but it is much simpler to use and more Python style friendly, so if you don't want to focus on too many details or control and not focus on some advanced features, Keras is one of the best options, but as far as if you want to dig into more, for sure TensorFlow is the right choice