The DataRobot AI Platform is presented as a solution that accelerates and democratizes data science by automating the end-to-end journey from data to value and allows users to deploy AI applications at scale. DataRobot provides a centrally governed platform that gives users AI to drive business outcomes, that is available on the user's cloud platform-of-choice, on-premise, or as a fully-managed service. The solutions include tools providing data preparation enabling users to explore and…
$0
Astra DB
Score 8.7 out of 10
N/A
Astra DB from DataStax is a vector database for developers that need to get accurate Generative AI applications into production, fast.
N/A
Pricing
DataRobot
Astra DB
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
DataRobot
Astra DB
Free Trial
Yes
Yes
Free/Freemium Version
Yes
Yes
Premium Consulting/Integration Services
Yes
Yes
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
DataRobot
Astra DB
Features
DataRobot
Astra DB
Vector Database
Comparison of Vector Database features of Product A and Product B
DataRobot can be used for risk assessment, such as predicting the likelihood of loan default. It can handle both classification and regression tasks effectively. It relies on historical data for model training. If you have limited historical data or the data quality is poor, it may not be the best choice as it requires a sufficient amount of high-quality data for accurate model building.
We've been super happy with Astra DB. It's been extremely well-suited for our vector search needs as described in previous responses. With Astra DB’s high-performance vector search, Maester’s AI dynamically optimizes responses in real-time, adapting to new user interactions without requiring costly retraining cycles.
DataRobot helps, with algorithms, to analyze and decipher numerous machine-learning techniques in order to provide models to assist in company-wide decision making.
Our DataRobot program puts on an "even playing field" the strength of auto-machine learning and allows us to make decisions in an extremely timely manner. The speed is consistent without being offset by errors or false-negatives.
It encompasses many desired techniques that help companies in general, to reconfigure in to artificial intelligence driven firms, with little to no inconvenience.
We need to be able to process a lot of data (our biggest clients process hundreds of milions of transactions every month). However, it is not only the amount of data, it is also an unpredictable patterns with spikes occuring at different points of time - something athat Astra is great at.
Our processing needs to be extremaly fast. Some of our clients use our enrichment in a synchronous way, meaning that any delay in processing is holding up the whole transaction lifecycle and can have a major impact on the client. Astra is very fast.
A close collaboration with GCP makes our life very easy. All of our technology sits in Google Cloud, so having Astra in there makes it a no-brainer solution for us.
The platform itself is very complicated. It probably can't function well without being complicated, but there is a big training curve to get over before you can effectively use it. Even I'm not sure if I'm effectively using it now.
The suggested model DataRobot deploys often not the best model for our purposes. We've had to do a lot of testing to make sure what model is the best. For regressive models, DataRobot does give you a MASE score but, for some reason, often doesn't suggest the best MASE score model.
The software will give you errors if output files are not entered correctly but will not exactly tell you how to fix them. Perhaps that is complicated, but being able to download a template with your data for an output file in the correct format would be nice.
The support team sometimes requires the escalate button pressed on tickets, to get timely responses. I will say, once the ticket is escalated, action is taken.
They require better documentation on the migration of data. The three primary methods for migrating large data volumes are bulk, Cassandra Data Migrator, and ZDM (Zero Downtime Migration Utility). Over time I have become very familiar will all three of these methods; however, through working with the Services team and the support team, it seemed like we were breaking new ground. I feel if the utilities were better documented and included some examples and/or use cases from large data migrations; this process would have been easier. One lesson learned is you likely need to migrate your application servers to the same cloud provider you host Astra on; otherwise, the latency is too large for latency-sensitive applications.
DataRobot presents a machine-learning platform designed by data scientists from an array of backgrounds, to construct and develop precise predictive modeling in a fraction of the time previously taken. The tech invloved addresses the critical shortage of data scientists by changing the speed and economics of predictive analytics. DataRobot utilizes parallel processing to evaluate models in R, Python, Spark MLlib, H2O and other open source databases. It searches for possible permutations and algorithms, features, transformation, processes, steps and tuning to yield the best models for the dataset and predictive goal.
As I am writing this report I am participating with Datarobot Engineers in an complex environment and we have their whole support. We are in Mexico and is not common to have this commitment from companies without expensive contract services. Installing is on premise and the client does not want us to take control and they, the client, is also limited because of internal IT regulations ,,, soo we are just doing magic and everybody is committed.
Their response time is fast, in case you do not contact them during business hours, they give a very good follow-up to your case. They also facilitate video calls if necessary for debugging.
I've done machine learning through python before, however having to code and test each model individually was very time consuming and required a lot of expertise. The data Robot approach, is an excellent way of getting to a well placed starting point. You can then pick up the model from there and fine tune further if you need.
Graph, search, analytics, administration, developer tooling, and monitoring are all incorporated into a single platform by Astra DB. Mongo Db is a self-managed infrastructure. Astra DB has Wide column store and Mongo DB has Document store. The best thing is that Astra DB operates on Java while Mongo DB operates on C++
We are well aware of the Cassandra architecture and familiar with the open source tooling that Datastax provides the industry (K8sSandra / Stargate) to scale Cassandra on Kubernetes.
Having prior knowledge of Cassandra / Kubernetes means we know that under the hood Astra is built on infinitely scalable technologies. We trust that the foundations that Astra is built on will scale so we know Astra will scale.