Kortical is an end to end AI as a Service (AIaaS) platform designed to accelerate the creation, iteration, explanation and deployment of world-class machine learning models. The vendor describes the key benefits of Kortical is AutoML that writes custom machine learning solutions from the ground up in code. Getting hands-on with the code is optional but being able to edit code it makes it easy to get the best of data scientists and AutoML, while also getting the benefits of full…
N/A
Saturn Cloud
Score 7.7 out of 10
N/A
Saturn Cloud is an ML platform for individuals and teams, available on multiple clouds: AWS, Azure, GCP, and OCI. It provides access to computing resources with customizable amounts of memory and power, including GPUs and Dask distributed computing clusters, in a wholly hosted environment. Saturn Cloud is presented as flexible and straightforward for new data scientists while giving senior and experienced staff the
capabilities and configurability they need.…
Kortical is really widely applicable to many use cases, although it doesn't handle images or video it is great to help you build really great ML models without needing to plan ahead what you are going to try, you let the platform build you the best model. It is suited to beginner and more advanced data scientists as you can edit the code to narrow the search space which makes model creation more you build it without AutoML. Hosting the model behind an API that is ready to go is great as it saves so much time vs doing that dev work from scratch
Saturn Cloud is a powerful data science platform that offers numerous benefits to organizations. It simplifies and streamlines the development, deployment, and scaling of data science and machine learning models. The platform addresses common business problems such as scalability, collaboration, efficiency, and cost-effectiveness. With Saturn Cloud, organizations can easily handle large datasets and complex computations, collaborate effectively among data science teams, automate repetitive tasks, optimize workflows, and utilize flexible and cost-efficient cloud resources. By leveraging Saturn Cloud, organizations can accelerate their data science projects, improve productivity, and achieve better outcomes in areas such as predictive modeling, recommendation systems, fraud detection, and more.
While Saturn Cloud offers a range of pre-built templates and workflows, there is currently limited support for customization. For example, users may not be able to modify the pre-configured environments that come with the templates, or may find it difficult to integrate their own custom libraries and tools. Offering more flexibility in this area could help users tailor the platform to their specific needs and workflows.
While Saturn Cloud offers a variety of pre-built environments for data science and machine learning workloads, some users may prefer to use custom Docker images instead. However, the platform currently has limited support for Docker, which can be a limitation for users who need to work with specific dependencies or custom libraries. Adding more robust support for Docker could help to make the platform more versatile and adaptable to a wider range of use cases.
This is user friendly , better than its counterparts. Anyone familiar working with other cloud solutions for GPU will agree on this. Hence the rating of 10 was given to this. I personally love the fact that I get so much compute time for being a free user which is very efficient in terms of budget
Their support is great as we use Slack and we have our own channel and they always respond really quickly. Data Science support is available to help unblock you as well as dev support as we're setting up the data feeds. It would be great if there were more FAQ or self-help guides in the platform but the personal touch is also really appreciated and probably gets us there quicker anyway.
Saturn Cloud provides an R server, that's super important. Even you can write R on CoLab with different settings, but it is inconvenient and slow. Saturn Cloud can give me a different IDE environment that I'm more used to, even if I'm using Python. Whereas CoLab is more dedicated to Jupyter notebook
ROI is great as what we would spend on compute we get the AutoML for essentially the same price so it is cost neutral as Kortical comes with compute built-in.
The results mean that we can automate so much more than our previous model so that is key to the positive ROI.
The platform auto trains new models and lets us know when there is a better model so it has saved a lot of time so we can focus on new business problems to solve with ML.
Although we are still in the implementation phase with Saturn Cloud, we anticipate significant positive impacts on our business objectives.
The platform is expected to enhance our computational capabilities with its easy access to top-tier NVIDIA GPUs, which should accelerate our AI and machine learning projects. We believe this will lead to reduced development times and faster deployment of our generative AI models.
While Saturn Cloud provides excellent computational resources and reliable uptime, I find that their user interface could be improved. The UI can be unintuitive at times, making it a bit challenging to navigate and configure certain settings. Enhancing the user interface to be more streamlined and user-friendly would significantly improve the overall experience. Having pre-configured stacks readily available would also save time and make the platform even more efficient to use.