Python IDLE vs. TensorFlow

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Python IDLE
Score 8.5 out of 10
N/A
Python's IDLE is the integrated development environment (IDE) and learning platform for Python, presented as a basic and simple IDE appropriate for learners in educational settings.
$0
TensorFlow
Score 7.7 out of 10
N/A
TensorFlow is an open-source machine learning software library for numerical computation using data flow graphs. It was originally developed by Google.N/A
Pricing
Python IDLETensorFlow
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Python IDLETensorFlow
Free Trial
NoNo
Free/Freemium Version
YesNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Python IDLETensorFlow
Best Alternatives
Python IDLETensorFlow
Small Businesses
PyCharm
PyCharm
Score 9.2 out of 10
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Medium-sized Companies
PyCharm
PyCharm
Score 9.2 out of 10
Posit
Posit
Score 10.0 out of 10
Enterprises
PyCharm
PyCharm
Score 9.2 out of 10
Posit
Posit
Score 10.0 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Python IDLETensorFlow
Likelihood to Recommend
2.2
(7 ratings)
6.0
(15 ratings)
Usability
8.2
(2 ratings)
9.0
(1 ratings)
Support Rating
8.0
(1 ratings)
9.1
(2 ratings)
Implementation Rating
-
(0 ratings)
8.0
(1 ratings)
User Testimonials
Python IDLETensorFlow
Likelihood to Recommend
Python Software Foundation
Scenarios where python IDLE is well suited 1-Quick scripting and prototyping 2-Education and training 3-small projects utilities 4-exploring python libraries and modules Scenarios where python is less appropriate 1 large scale projects 2 complex debugging and profiling 3 multi language development 4 Advanced code analysis and inspection
Read full review
Open Source
TensorFlow is great for most deep learning purposes. This is especially true in two domains: 1. Computer vision: image classification, object detection and image generation via generative adversarial networks 2. Natural language processing: text classification and generation. The good community support often means that a lot of off-the-shelf models can be used to prove a concept or test an idea quickly. That, and Google's promotion of Colab means that ideas can be shared quite freely. Training, visualizing and debugging models is very easy in TensorFlow, compared to other platforms (especially the good old Caffe days). In terms of productionizing, it's a bit of a mixed bag. In our case, most of our feature building is performed via Apache Spark. This means having to convert Parquet (columnar optimized) files to a TensorFlow friendly format i.e., protobufs. The lack of good JVM bindings mean that our projects end up being a mix of Python and Scala. This makes it hard to reuse some of the tooling and support we wrote in Scala. This is where MXNet shines better (though its Scala API could do with more work).
Read full review
Pros
Python Software Foundation
  • Firstly, I would say Python IDLE interface is user friendly.
  • Easy to learn for the beginners.
  • Syntax highlighting is nice features.
  • Smart indent helps a lot.
Read full review
Open Source
  • A vast library of functions for all kinds of tasks - Text, Images, Tabular, Video etc.
  • Amazing community helps developers obtain knowledge faster and get unblocked in this active development space.
  • Integration of high-level libraries like Keras and Estimators make it really simple for a beginner to get started with neural network based models.
Read full review
Cons
Python Software Foundation
  • Too simplistic
  • Could not find source revision management integration support
  • Only basic debugging is available
  • Does not have data-science-specific notebooks (but can be installed separately)
Read full review
Open Source
  • RNNs are still a bit lacking, compared to Theano.
  • Cannot handle sequence inputs
  • Theano is perhaps a bit faster and eats up less memory than TensorFlow on a given GPU, perhaps due to element-wise ops. Tensorflow wins for multi-GPU and “compilation” time.
Read full review
Usability
Python Software Foundation
The IDE Python IDLE is a good place to start as it helps you become familiar with the way Python works and understand its syntax.
This IDE allows you to configure the environment, font, size, colors, .....
It also looks like any simple text editor for any operating system, I work with Windows or Linux interchangeably, and you don't have to learn to use the IDE before programming.
Once the IDE is executed you can start programming directly in it.
Read full review
Open Source
Support of multiple components and ease of development.
Read full review
Support Rating
Python Software Foundation
Python IDLE support is what the community can give you. As it is free software, it does not have support provided by the manufacturer or by third-parties.
In any case, for most of the problems that normal users can find, the solution, or alternatives, can be found quickly online.
As this IDE is made in Python, the support is the same group of Python developers.
Read full review
Open Source
Community support for TensorFlow is great. There's a huge community that truly loves the platform and there are many examples of development in TensorFlow. Often, when a new good technique is published, there will be a TensorFlow implementation not long after. This makes it quick to ally the latest techniques from academia straight to production-grade systems. Tooling around TensorFlow is also good. TensorBoard has been such a useful tool, I can't imagine how hard it would be to debug a deep neural network gone wrong without TensorBoard.
Read full review
Implementation Rating
Python Software Foundation
No answers on this topic
Open Source
Use of cloud for better execution power is recommended.
Read full review
Alternatives Considered
Python Software Foundation
It's easy to set up and run quick analysis in Python IDLE on my local machine. The output is direct and easy to read. But sometimes I prefer Jupyter Notebook when the datasets are large, since it would take too long to run on my local machine. It is easier to run Jupyter Notebook on my cloud desktop
Read full review
Open Source
Keras is built on top of TensorFlow, but it is much simpler to use and more Python style friendly, so if you don't want to focus on too many details or control and not focus on some advanced features, Keras is one of the best options, but as far as if you want to dig into more, for sure TensorFlow is the right choice
Read full review
Return on Investment
Python Software Foundation
  • In a short time, we were able to develop several ML models for various teams to make accurate decisions.
  • Beginners can easily understand and adapt to GUI.
  • We could automate several manual validation tasks and so could reduce human intervention.
Read full review
Open Source
  • Learning is s bit difficult takes lot of time.
  • Developing or implementing the whole neural network is time consuming with this, as you have to write everything.
  • Once you have learned this, it make your job very easy of getting the good result.
Read full review
ScreenShots