Python's IDLE is the integrated development environment (IDE) and learning platform for Python, presented as a basic and simple IDE appropriate for learners in educational settings.
$0
TensorFlow
Score 7.7 out of 10
N/A
TensorFlow is an open-source machine learning software library for numerical computation using data flow graphs. It was originally developed by Google.
Scenarios where python IDLE is well suited 1-Quick scripting and prototyping 2-Education and training 3-small projects utilities 4-exploring python libraries and modules Scenarios where python is less appropriate 1 large scale projects 2 complex debugging and profiling 3 multi language development 4 Advanced code analysis and inspection
TensorFlow is great for most deep learning purposes. This is especially true in two domains: 1. Computer vision: image classification, object detection and image generation via generative adversarial networks 2. Natural language processing: text classification and generation. The good community support often means that a lot of off-the-shelf models can be used to prove a concept or test an idea quickly. That, and Google's promotion of Colab means that ideas can be shared quite freely. Training, visualizing and debugging models is very easy in TensorFlow, compared to other platforms (especially the good old Caffe days). In terms of productionizing, it's a bit of a mixed bag. In our case, most of our feature building is performed via Apache Spark. This means having to convert Parquet (columnar optimized) files to a TensorFlow friendly format i.e., protobufs. The lack of good JVM bindings mean that our projects end up being a mix of Python and Scala. This makes it hard to reuse some of the tooling and support we wrote in Scala. This is where MXNet shines better (though its Scala API could do with more work).
Theano is perhaps a bit faster and eats up less memory than TensorFlow on a given GPU, perhaps due to element-wise ops. Tensorflow wins for multi-GPU and “compilation” time.
The IDE Python IDLE is a good place to start as it helps you become familiar with the way Python works and understand its syntax.
This IDE allows you to configure the environment, font, size, colors, .....
It also looks like any simple text editor for any operating system, I work with Windows or Linux interchangeably, and you don't have to learn to use the IDE before programming.
Once the IDE is executed you can start programming directly in it.
Python IDLE support is what the community can give you. As it is free software, it does not have support provided by the manufacturer or by third-parties.
In any case, for most of the problems that normal users can find, the solution, or alternatives, can be found quickly online.
As this IDE is made in Python, the support is the same group of Python developers.
Community support for TensorFlow is great. There's a huge community that truly loves the platform and there are many examples of development in TensorFlow. Often, when a new good technique is published, there will be a TensorFlow implementation not long after. This makes it quick to ally the latest techniques from academia straight to production-grade systems. Tooling around TensorFlow is also good. TensorBoard has been such a useful tool, I can't imagine how hard it would be to debug a deep neural network gone wrong without TensorBoard.
It's easy to set up and run quick analysis in Python IDLE on my local machine. The output is direct and easy to read. But sometimes I prefer Jupyter Notebook when the datasets are large, since it would take too long to run on my local machine. It is easier to run Jupyter Notebook on my cloud desktop
Keras is built on top of TensorFlow, but it is much simpler to use and more Python style friendly, so if you don't want to focus on too many details or control and not focus on some advanced features, Keras is one of the best options, but as far as if you want to dig into more, for sure TensorFlow is the right choice