Pytorch vs. TensorFlow

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Pytorch
Score 9.3 out of 10
N/A
Pytorch is an open source machine learning (ML) framework boasting a rich ecosystem of tools and libraries that extend PyTorch and support development in computer vision, NLP and or that supports other ML goals.N/A
TensorFlow
Score 7.7 out of 10
N/A
TensorFlow is an open-source machine learning software library for numerical computation using data flow graphs. It was originally developed by Google.N/A
Pricing
PytorchTensorFlow
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
PytorchTensorFlow
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
PytorchTensorFlow
Considered Both Products
Pytorch
Chose Pytorch
The syntax of PyTorch is much better in my opinion, and the programming style is more pythonic and easier to use. I also think PyTorch is a lot easier to debug than the competitors I've listed (Caffe2 and TensorFlow). I do like some of the examples given on tensorflows website, …
Chose Pytorch
As I described in previous statements, Pytorch is much better suited than TensorFlow from a software development look. This Pythonic idea was then taken and repeated by all the other frameworks.

You can get to better performance models by better understanding the deep learning …
Chose Pytorch
Pytorch is very, very simple compared to TensorFlow. Simple to install, less dependency issues, and very small learning curve. TensorFlow is very much optimised for robust deployment but very complicated to train simple models and play around with the loss functions. It needs a …
Chose Pytorch
TensorFlow without Keras is not a pleasant experience; when using Keras, it is pretty nice, but it feels more opinionated than PyTorch; one is less free, which is not an issue in industrial settings with classic workflow but can be an issue in research settings. JAX is great …
Chose Pytorch
Saving and loading Machine/Deep Learning models is very easy with Pytorch. It provides visualization capabilities when combined with Tensorboard, and mathematical operations are highly optimized. Easy to understand for a person who is an expert in Python. It takes significantly …
TensorFlow
Chose TensorFlow
TensorFlow has better support for Java compared to Pytorch and is also very well documented.
Chose TensorFlow
I prefer Pytorch overall, recent models are often only available with Pytorch
Pytorch is also easier to use and it is often easier to find support for Pytorch code nowadays than TensorFlow
Also it seems like lots of Google internal resource uses JAX. I mostly uses TensorFlow to …
Best Alternatives
PytorchTensorFlow
Small Businesses
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Medium-sized Companies
Posit
Posit
Score 10.0 out of 10
Posit
Posit
Score 10.0 out of 10
Enterprises
Posit
Posit
Score 10.0 out of 10
Posit
Posit
Score 10.0 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
PytorchTensorFlow
Likelihood to Recommend
9.0
(6 ratings)
6.0
(15 ratings)
Usability
10.0
(1 ratings)
9.0
(1 ratings)
Support Rating
-
(0 ratings)
9.1
(2 ratings)
Implementation Rating
-
(0 ratings)
8.0
(1 ratings)
User Testimonials
PytorchTensorFlow
Likelihood to Recommend
Open Source
They have created Pytorch Lightening on top of Pytorch to make the life of Data Scientists easy so that they can use complex models they need with just a few lines of code, so it's becoming popular. As compared to TensorFlow(Keras), where we can create custom neural networks by just adding layers, it's slightly complicated in Pytorch.
Read full review
Open Source
TensorFlow is great for most deep learning purposes. This is especially true in two domains: 1. Computer vision: image classification, object detection and image generation via generative adversarial networks 2. Natural language processing: text classification and generation. The good community support often means that a lot of off-the-shelf models can be used to prove a concept or test an idea quickly. That, and Google's promotion of Colab means that ideas can be shared quite freely. Training, visualizing and debugging models is very easy in TensorFlow, compared to other platforms (especially the good old Caffe days). In terms of productionizing, it's a bit of a mixed bag. In our case, most of our feature building is performed via Apache Spark. This means having to convert Parquet (columnar optimized) files to a TensorFlow friendly format i.e., protobufs. The lack of good JVM bindings mean that our projects end up being a mix of Python and Scala. This makes it hard to reuse some of the tooling and support we wrote in Scala. This is where MXNet shines better (though its Scala API could do with more work).
Read full review
Pros
Open Source
  • flexibility
  • Clean code, close to the algorithm.
  • Fast
  • Handles GPUs, multiple GPUs on a single machine, CPUs, and Mac.
  • Versatile, can work efficiently on text/audio/image/tabular datasets.
Read full review
Open Source
  • A vast library of functions for all kinds of tasks - Text, Images, Tabular, Video etc.
  • Amazing community helps developers obtain knowledge faster and get unblocked in this active development space.
  • Integration of high-level libraries like Keras and Estimators make it really simple for a beginner to get started with neural network based models.
Read full review
Cons
Open Source
  • Since pythonic if developing an app with pytorch as backend the response can be substantially slow and support is less compares to Tensorflow
Read full review
Open Source
  • RNNs are still a bit lacking, compared to Theano.
  • Cannot handle sequence inputs
  • Theano is perhaps a bit faster and eats up less memory than TensorFlow on a given GPU, perhaps due to element-wise ops. Tensorflow wins for multi-GPU and “compilation” time.
Read full review
Usability
Open Source
The big advantage of PyTorch is how close it is to the algorithm. Oftentimes, it is easier to read Pytorch code than a given paper directly. I particularly like the object-oriented approach in model definition; it makes things very clean and easy to teach to software engineers.
Read full review
Open Source
Support of multiple components and ease of development.
Read full review
Support Rating
Open Source
No answers on this topic
Open Source
Community support for TensorFlow is great. There's a huge community that truly loves the platform and there are many examples of development in TensorFlow. Often, when a new good technique is published, there will be a TensorFlow implementation not long after. This makes it quick to ally the latest techniques from academia straight to production-grade systems. Tooling around TensorFlow is also good. TensorBoard has been such a useful tool, I can't imagine how hard it would be to debug a deep neural network gone wrong without TensorBoard.
Read full review
Implementation Rating
Open Source
No answers on this topic
Open Source
Use of cloud for better execution power is recommended.
Read full review
Alternatives Considered
Open Source
Pytorch is very, very simple compared to TensorFlow. Simple to install, less dependency issues, and very small learning curve. TensorFlow is very much optimised for robust deployment but very complicated to train simple models and play around with the loss functions. It needs a lot of juggling around with the documentation. The research community also prefers PyTorch, so it becomes easy to find solutions to most of the problems. Keras is very simple and good for learning ML / DL. But when going deep into research or building some product that requires a lot of tweaks and experimentation, Keras is not suitable for that. May be good for proving some hypotheses but not good for rigorous experimentation with complex models.
Read full review
Open Source
Keras is built on top of TensorFlow, but it is much simpler to use and more Python style friendly, so if you don't want to focus on too many details or control and not focus on some advanced features, Keras is one of the best options, but as far as if you want to dig into more, for sure TensorFlow is the right choice
Read full review
Return on Investment
Open Source
  • The ability to make models as never before
  • Being able to control the bias of models was not done before the arrival of Pytorch in our company
Read full review
Open Source
  • Learning is s bit difficult takes lot of time.
  • Developing or implementing the whole neural network is time consuming with this, as you have to write everything.
  • Once you have learned this, it make your job very easy of getting the good result.
Read full review
ScreenShots