Amazon EMR (Elastic MapReduce) vs. Amazon Kinesis

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Amazon EMR
Score 8.6 out of 10
N/A
Amazon EMR is a cloud-native big data platform for processing vast amounts of data quickly, at scale. Using open source tools such as Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi (Incubating), and Presto, coupled with the scalability of Amazon EC2 and scalable storage of Amazon S3, EMR gives analytical teams the engines and elasticity to run Petabyte-scale analysis.N/A
Amazon Kinesis
Score 9.3 out of 10
N/A
Amazon Kinesis is a streaming analytics suite for data intake from video or other disparate sources and applying analytics for machine learning (ML) and business intelligence.
$0.01
per GB data ingested / consumed
Pricing
Amazon EMR (Elastic MapReduce)Amazon Kinesis
Editions & Modules
No answers on this topic
Amazon Kinesis Video Streams
$0.00850
per GB data ingested / consumed
Amazon Kinesis Data Streams
$0.04
per hour per stream
Amazon Kinesis Data Analytics
$0.11
per hour
Amazon Kinesis Data Firehose
tiered pricing starting at $0.029
per month first 500 TB ingested
Offerings
Pricing Offerings
Amazon EMRAmazon Kinesis
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details——
More Pricing Information
Community Pulse
Amazon EMR (Elastic MapReduce)Amazon Kinesis
Features
Amazon EMR (Elastic MapReduce)Amazon Kinesis
Streaming Analytics
Comparison of Streaming Analytics features of Product A and Product B
Amazon EMR (Elastic MapReduce)
-
Ratings
Amazon Kinesis
8.3
2 Ratings
3% above category average
Real-Time Data Analysis00 Ratings10.01 Ratings
Data Ingestion from Multiple Data Sources00 Ratings9.02 Ratings
Low Latency00 Ratings9.02 Ratings
Integrated Development Tools00 Ratings9.02 Ratings
Data wrangling and preparation00 Ratings10.01 Ratings
Linear Scale-Out00 Ratings6.12 Ratings
Data Enrichment00 Ratings5.01 Ratings
Best Alternatives
Amazon EMR (Elastic MapReduce)Amazon Kinesis
Small Businesses

No answers on this topic

IBM Streams (discontinued)
IBM Streams (discontinued)
Score 9.0 out of 10
Medium-sized Companies
Cloudera Manager
Cloudera Manager
Score 9.9 out of 10
Confluent
Confluent
Score 8.8 out of 10
Enterprises
IBM Analytics Engine
IBM Analytics Engine
Score 8.4 out of 10
Spotfire Streaming
Spotfire Streaming
Score 6.8 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Amazon EMR (Elastic MapReduce)Amazon Kinesis
Likelihood to Recommend
8.0
(19 ratings)
9.0
(3 ratings)
Usability
7.0
(4 ratings)
-
(0 ratings)
Support Rating
9.0
(3 ratings)
7.1
(2 ratings)
User Testimonials
Amazon EMR (Elastic MapReduce)Amazon Kinesis
Likelihood to Recommend
Amazon AWS
We are running it to perform preparation which takes a few hours on EC2 to be running on a spark-based EMR cluster to total the preparation inside minutes rather than a few hours. Ease of utilization and capacity to select from either Hadoop or spark. Processing time diminishes from 5-8 hours to 25-30 minutes compared with the Ec2 occurrence and more in a few cases.
Read full review
Amazon AWS
Amazon Kinesis is a great replacement for Kafka and it works better whenever the components of the solution are AWS based. Best if extended fan-out is not required, but still price-performance ratio is very good for simplifying maintenance.
I would go with a different option if the systems to be connected are legacy, for instance in the case of traditional messaging clients.
Read full review
Pros
Amazon AWS
  • EMR does well in managing the cost as it uses the task node cores to process the data and these instances are cheaper when the data is stored on s3. It is really cost efficient. No need to maintain any libraries to connect to AWS resources.
  • EMR is highly available, secure and easy to launch. No much hassle in launching the cluster (Simple and easy).
  • EMR manages the big data frameworks which the developer need not worry (no need to maintain the memory and framework settings) about the framework settings. It's all setup on launch time. The bootstrapping feature is great.
Read full review
Amazon AWS
  • Processing huge loads of data
  • Integrating well with IoT Platform on Amazon
  • Integration with overall AWS Ecosystem
  • Scalability
Read full review
Cons
Amazon AWS
  • It would have been better if packages like HBase and Flume were available with Amazon EMR. This would make the product even more helpful in some cases.
  • Products like Cloudera provide the options to move the whole deployment into a dedicated server and use it at our discretion. This would have been a good option if available with EMR.
  • If EMR gave the option to be used with any choice of cloud provider, it would have helped instead of having to move the data from another cloud service to S3.
Read full review
Amazon AWS
  • Not a queue system, so little visibility into "backlog" if there is any
  • Confusing terminology to make sure events aren't missed
  • Sometimes didn't seem to trigger Lambda functions, or dropped events when a lot came in
Read full review
Usability
Amazon AWS
Documentation is quite good and the product is regularly updated, so new features regularly come out. The setup is straightforward enough, especially once you have already established the overall platform infrastructure and the aws-cli APIs are easy enough to use. It would be nice to have some out-of-the-box integrations for checking logs and the Spark UI, rather than relying on know-how and digging through multiple levels to find the informations
Read full review
Amazon AWS
No answers on this topic
Support Rating
Amazon AWS
I give the overall support for Amazon EMR this rating because while the support technicians are very knowledgeable and always able to help, it sometimes takes a very long time to get in contact with one of the support technicians. So overall the support is pretty good for Amazon EMR.
Read full review
Amazon AWS
The documentation was confusing and lacked examples. The streams suddenly stopped working with no explanation and there was no information in the logs. All these were more difficult when dealing with enhanced fan-out. In fact, we were about to abort the usage of Kinesis due to a misunderstanding with enhanced fan-out.
Read full review
Alternatives Considered
Amazon AWS
Snowflake is a lot easier to get started with than the other options. Snowflake's data lake building capabilities are far more powerful. Although Amazon EMR isn't our first pick, we've had an excellent experience with EC2 and S3. Because of our current API interfaces, it made more sense for us to continue with Hadoop rather than explore other options.
Read full review
Amazon AWS
The main benefit was around set up - incredibly easy to just start using Kinesis. Kinesis is a real-time data processing platform, while Kafka is more of a message queue system. If you only need a message queue from a limited source, Kafka may do the job. More complex use cases, with low latency, higher volume of data, real time decisions and integration with multiple sources and destination at a decent price, Kinesis is better.
Read full review
Return on Investment
Amazon AWS
  • It was obviously cheaper and convenient to use as most of our data processing and pipelines are on AWS. It was fast and readily available with a click and that saved a ton of time rather than having to figure out the down time of the cluster if its on premises.
  • It saved time on processing chunks of big data which had to be processed in short period with minimal costs. EMR solved this as the cluster setup time and processing was simple, easy, cheap and fast.
  • It had a negative impact as it was very difficult in submitting the test jobs as it lags a UI to submit spark code snippets.
Read full review
Amazon AWS
  • Caused us to need to re-engineer some basic re-try logic
  • Caused us to drop some content without knowing it
  • Made monitoring much more difficult
  • We eventually switched back to SQS because Kinesis is not the same as a Queue system
Read full review
ScreenShots