Amazon EMR is a cloud-native big data platform for processing vast amounts of data quickly, at scale. Using open source tools such as Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi (Incubating), and Presto, coupled with the scalability of Amazon EC2 and scalable storage of Amazon S3, EMR gives analytical teams the engines and elasticity to run Petabyte-scale analysis.
N/A
Amazon Kinesis
Score 9.3 out of 10
N/A
Amazon Kinesis is a streaming analytics suite for data intake from video or other disparate sources and applying analytics for machine learning (ML) and business intelligence.
$0.01
per GB data ingested / consumed
Pricing
Amazon EMR (Elastic MapReduce)
Amazon Kinesis
Editions & Modules
No answers on this topic
Amazon Kinesis Video Streams
$0.00850
per GB data ingested / consumed
Amazon Kinesis Data Streams
$0.04
per hour per stream
Amazon Kinesis Data Analytics
$0.11
per hour
Amazon Kinesis Data Firehose
tiered pricing starting at $0.029
per month first 500 TB ingested
Offerings
Pricing Offerings
Amazon EMR
Amazon Kinesis
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Amazon EMR (Elastic MapReduce)
Amazon Kinesis
Features
Amazon EMR (Elastic MapReduce)
Amazon Kinesis
Streaming Analytics
Comparison of Streaming Analytics features of Product A and Product B
We are running it to perform preparation which takes a few hours on EC2 to be running on a spark-based EMR cluster to total the preparation inside minutes rather than a few hours. Ease of utilization and capacity to select from either Hadoop or spark. Processing time diminishes from 5-8 hours to 25-30 minutes compared with the Ec2 occurrence and more in a few cases.
Amazon Kinesis is a great replacement for Kafka and it works better whenever the components of the solution are AWS based. Best if extended fan-out is not required, but still price-performance ratio is very good for simplifying maintenance.
I would go with a different option if the systems to be connected are legacy, for instance in the case of traditional messaging clients.
EMR does well in managing the cost as it uses the task node cores to process the data and these instances are cheaper when the data is stored on s3. It is really cost efficient. No need to maintain any libraries to connect to AWS resources.
EMR is highly available, secure and easy to launch. No much hassle in launching the cluster (Simple and easy).
EMR manages the big data frameworks which the developer need not worry (no need to maintain the memory and framework settings) about the framework settings. It's all setup on launch time. The bootstrapping feature is great.
It would have been better if packages like HBase and Flume were available with Amazon EMR. This would make the product even more helpful in some cases.
Products like Cloudera provide the options to move the whole deployment into a dedicated server and use it at our discretion. This would have been a good option if available with EMR.
If EMR gave the option to be used with any choice of cloud provider, it would have helped instead of having to move the data from another cloud service to S3.
Documentation is quite good and the product is regularly updated, so new features regularly come out. The setup is straightforward enough, especially once you have already established the overall platform infrastructure and the aws-cli APIs are easy enough to use. It would be nice to have some out-of-the-box integrations for checking logs and the Spark UI, rather than relying on know-how and digging through multiple levels to find the informations
I give the overall support for Amazon EMR this rating because while the support technicians are very knowledgeable and always able to help, it sometimes takes a very long time to get in contact with one of the support technicians. So overall the support is pretty good for Amazon EMR.
The documentation was confusing and lacked examples. The streams suddenly stopped working with no explanation and there was no information in the logs. All these were more difficult when dealing with enhanced fan-out. In fact, we were about to abort the usage of Kinesis due to a misunderstanding with enhanced fan-out.
Snowflake is a lot easier to get started with than the other options. Snowflake's data lake building capabilities are far more powerful. Although Amazon EMR isn't our first pick, we've had an excellent experience with EC2 and S3. Because of our current API interfaces, it made more sense for us to continue with Hadoop rather than explore other options.
The main benefit was around set up - incredibly easy to just start using Kinesis. Kinesis is a real-time data processing platform, while Kafka is more of a message queue system. If you only need a message queue from a limited source, Kafka may do the job. More complex use cases, with low latency, higher volume of data, real time decisions and integration with multiple sources and destination at a decent price, Kinesis is better.
It was obviously cheaper and convenient to use as most of our data processing and pipelines are on AWS. It was fast and readily available with a click and that saved a ton of time rather than having to figure out the down time of the cluster if its on premises.
It saved time on processing chunks of big data which had to be processed in short period with minimal costs. EMR solved this as the cluster setup time and processing was simple, easy, cheap and fast.
It had a negative impact as it was very difficult in submitting the test jobs as it lags a UI to submit spark code snippets.